Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Sensorgegevens combineren met conventionele bemonsteringsgegevens

Gebruikte literatuur

  • Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
    http://dx.doi.org/10.1023/A:1010933404324
  • Curceac, S. Hawkins, J., Harris, P., 2021.Advanced Quality Control Report 1: Missing value
    imputation of the 15-minute soil moisture data.
    https://rpubs.com/North_Wyke_Farm_Platform/765406
  • Hawkins, 2021. User guide to fine resolution (15 minute) data. Version 1.10.
    http://resources.rothamsted.ac.uk/sites/default/files/groups/North_Wyke_Farm_Platform/FP_UG.Doc_.002_15MinData_ver1.10.pdf
  • Josse J. and F. Husson. 2016. missMDA: A Package for Handling Missing Values in
    Multivariate Data Analysis. Journal of Statistical Software, 70(1), 1-31.
  • Schmidt, L., Schaefer, D., Geller, J., Lünenschloss, P., Palm, B. , Rinke, K., and Bumberger,
    J. System for Automated Quality Control (Saqc) to Enable Traceable and Reproducible Data
    Streams in Environmental Science. SSRN Electronic Journal.
    http://dx.doi.org/10.2139/ssrn.4173698.
  • Spackman Jones, A., T.L. Jones, J. S. Horsburgh, 2022. Toward automating post processing
    of aquatic sensor data. Environmental Modelling and Software 151.
  • Talagala, P. D., Hyndman, R. J., Leigh, C., Mengersen, K., & Smith-Miles, K. (2019). A
    feature-based procedure for detecting technical outliers in water-quality data from in situ
    sensors. Water Resources Research, 55, 8547– 8568.
    https://doi.org/10.1029/2019WR024906
  • Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T., Frenzel, M.,
    Schwank, M., Baessler, C., Butterbach-Bahl, K., et al., 2011. A network of terrestrial
    environmental observatories in germany. Vadose zone journal 10, 955–973.
    doi:10.2136/vzj2010.0139.
  • Zhang, Y. F., Thorburn, P. J., Xiang, W., & Fitch, P. (2019). SSIM—A deep learning approach
    for recovering missing time series sensor data. IEEE Internet of Things Journal, 6(4), 6618-
    6628.
  • Zhang, Y. & P.J. Thorburn, 2021. A dual-head attention model for time series data imputation,
    Comput. Electron. Agric. 189, http://dx.doi.org/10.1016/j.compag.2021.106377.
  • Zhang, Y. & P. J. Thorburn, 2022. Handling missing data in near real-time environmental
    monitoring: A system and a review of selected methods. Future Generation Computer
    Systems 128.
  • Vilas, M. P., P. J. Thorburn, S. Fielke, T. Webster, M. Mooij, J. S. Biggs, Y.F. Zhang, A.
    Adham, A. Davis, B. Dungan, R. Butler, P. Fitch, 2020. 1622WQ: A web-based application to
    increase farmer awareness of the impact of agriculture on water quality. Environmental
    Modelling & Software 132. https://doi.org/10.1016/j.envsoft.2020.104816