Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.



What

nameofinstrance

nameofinstance.xml

Description

Configuration of the pcraster transformation module

schema location

http

https://

fews

fewsdocs.

wldelft

deltares.nl/schemas/version1.0/pcrTransformationSets.xsd

Table of Contents
Children Display

Introduction

The pcrTransformation model allows a direct link between data in DELFT-FEWS and pcraster using the newly developed PCraster API based on in-memory exchage exchange of (XML) data. As such, Delft-Fews can use all available pcraster functions to process data. Pcraster documentation is available elsewhere.

...

At this point a working version is available within Delft-Fews that can be used to perform all operations supported by PCraster. This means that all time series data stored in Delft-Fews (grids and scalars) can be used as input to the module; all output is in grid format.  If multiple timsteps timesteps are fed to the module at one each timestep will be run separately, i.e. it is not possible to refer to data of a previous timestep within the module. A pcraster model usually consists of a initial section (executed only once) and a dynamic section that is executed for each timestep. This version of the pcrTransformation only implements the initial section.

Info

As of release 2008.3 the system includes support for dynamic scripts. Existing script will continue to work without modification (albeit significantly faster) and dynamic scripts are now supported.

Other documentation

Extended examples Examples are available in the attached pdf document.

Module Configuration

The schema diagram is shown below, three main sections can be distinguished:

...

  1. Grid Definition (number of rows, columns etc.) (do not use if any of the other methods can be used)
  2. Grid location Id (this will use a grid definition the the Grids.xml file in the RegionConfigFiles section).
  3. TimeSeriesSet which defines a Grid TimeSeries. (the grid definition is taken from the timeseries itself)

...

Here are few examples, which show the different methods available when defining an Area Map.
1.    The area map is given as Grid Definition. The grid definition contains information such as GeoDatum, coordinates of upper left grid point, number of columns and rows and cell width and height.defined as a (FEWS) grid location id which refers to the grid definition at the same location within Grids.xml configuration file

                                <areaMap>
                                                <geoDatum>WGS 1984locationId>H-2002</geoDatumlocationId>
                                                                                <upperLeftCorner/areaMap>                                                                 <x>2</x>
                                                                <y>1</y>
                                                                <z>90</z>
                                                </upperLeftCorner>
                                                <rows>100</rows>
                                                <columns>100</columns>
                                                <cellwidth>0.1</cellwidth>
                                                <cellheight>0.1</cellheight>
                                </areaMap>

2.    The area map is defined as a (FEWS) grid location id which refers to the grid definition at the same location within Grids.xml configuration file

2.    The area map is defined as a (FEWS Grid) TimeSeries Set. For details on how to define TimeSeriesSet please refer FEWS Configuration Guide. 

                                <areaMap>
                                                <moduleInstanceId>ImportGrid</moduleInstanceId>
                                                <valueType>grid</valueType>
                                                <parameterId>P.m</parameterId>
                                                <locationId>MeteoGrid</locationId>
                                                <timeSeriesType>external historical</timeSeriesType>
                                                <timeStep unit="hour"/>
                                                <relativeViewPeriod unit="day" start="0" end="1"/>
                                                <readWriteMode>read only</readWriteMode>
                                <                                <areaMap>
                                                <locationId>H-2002</locationId>
                                </areaMap>

3.    The area map is defined given as a (FEWS Grid) TimeSeries Set. For details on how to define TimeSeriesSet please refer FEWS Configuration Guide. Grid Definition (Not recommended) . The grid definition contains information such as GeoDatum, coordinates of upper left grid point, number of columns and rows and cell width and height.

                                <areaMap>
                                                <moduleInstanceIdgeoDatum>ImportGridWGS 1984</moduleInstanceIdgeoDatum>
                                                <upperLeftCorner>
                                                                <valueTypex>grid2</valueTypex>
                                                                                                                <parameterIdy>P.m1</parameterIdy>
                                                                                                                <locationIdz>MeteoGrid90</locationIdz>
                                                <timeSeriesType>external historical/upperLeftCorner>
                                                <rows>100</timeSeriesTyperows>
                                                <timeStep unit="hour"/ <columns>100</columns>
                                                <relativeViewPeriod unit="day" start="0" end="1"/cellwidth>0.1</cellwidth>
                                                <readWriteMode>read onlycellheight>0.1</readWriteModecellheight>
                                </areaMap>

Defining internal, input and output variables

...

  • timeInJulian
  • timeAsDayofYear
  • timeAsDayofMonth
  • timeAsHourofDay
  • timeAsDaysElapsedSince
  • timeAsHoursElapsedSince
  • Reference date.  Needed if the scalar type is defined as "timeAsDaysElapsedSince" or "timeAsHoursElapsedSince".
    Spatial type options are: spatial and non-spatial.  Generally all grid input timeseries are treated as spatial data, while all scalar timeseries (or constant values) are treated as non-spatial. To treat the scalar timeseries (single data value per time) value or constant value as spatial, one can set this option to "spatial". By doing so, the grid (as defined by area map) will be filled with (single) data value from timeseries for a corresponding timestep. Hence for a given timestep, the input to the PCRaster model will be a grid with a constant value in all the grid cells.

However there is an exception to the above mentioned approach. If the input variable is a scalar timeseries at multiple locations (using LocationSetId in TimeSeriesSet definition) and spatial type is set to spatial, and then the following approach is used:

...

  • Variable id (should be matching exactly as defined in the PCRaster text model.
  • Data type (similar to that for internal variables), and 
  • TimeSeriesSet, (at present) all output data should be grid timeseries.

Examples

Info

Please not that the input variable should be regarded as read-only in the actual pcraster script. You should NOT try to modify them within the script. Make a copy in an other variable(e.g. mycopy = theinputvar; ) if this is needed.

Examples

Here are few examples, showing different possibilities to define an interval, input and output Here are few examples, showing different possibilities to define an interval, input and output variables. Refer to the comments for details:

...

A working sample configuration for PcrTransformation is shown as below:

Code Blocknoformat
xml
xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- Solar radiation module demonstration configuration -->
<pcrTransformationSets xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.wldelft.nl/fews
http https://fewsfewsdocs.wldelftdeltares.nl/schemas/version1.0/pcrTransformationSets.xsd" version="1.1">
	<logLevel>WARN</logLevel>
	<pcrTransformationSet id="Potradiation">
		<areaMap>
			<locationId>Radiation</locationId>
		</areaMap>
		<definitions>
			<dataExchange>memory</dataExchange>
			<inputVariable variableId="Altitude" dataType="scalar" convertDatum="false" spatialType="spatial">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Time.event</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<inputVariable variableId="YearDay" dataType="scalar" convertDatum="false" scalarType="timeAsDayofYear">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>scalar</valueType>
					<parameterId>Time.event</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<inputVariable variableId="Hour" dataType="scalar" convertDatum="false" scalarType="timeAsHourofDay">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>scalar</valueType>
					<parameterId>Time.event</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<!-- Total potential Solar radiation -->
			<outputVariable variableId="SL" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Sol.pot</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
			<!-- Diffuse radiation -->
			<outputVariable variableId="SLDF" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Sol.pot.diffuse</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
			<!-- direct radiation -->
			<outputVariable variableId="SLDR" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Sol.pot.direct</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
		</definitions>
		<pcrModel id="String">
			<text><![CDATA[
#! --unittrue --degrees
# Test script to determine radiation over a grid.
#
# Inputs from Delft-Fews into this script
# - YearDay -> scalar with  day since beginning of year
# - Hour of day -> Fractional hour of day (e.g. 12.5 = 12:30)
# Ouputs to FEWS
# - SL -> Total Solar radiation
#
# This version determines Clear Sky radiation assuming a level surface using a uniform
# altitude. This level is configured in the script below.
Altitude=spatial(10);

Latitude = ycoordinate(boolean(Altitude));
Longitude = xcoordinate(boolean(Altitude));

Day =YearDay;
pi = 3.1416;
Sc       = 1367.0;          # Solar constant (Gates, 1980) [W/m2]
Trans    = 0.6;             # Transmissivity tau (Gates, 1980)

AtmPcor = ((288-0.0065*Altitude)/288)**5.256;            # atm pressure corr [-]

# Solar geometry
# ----------------------------
# SolDec  :declination sun per day  between +23 and -23 [deg]
# HourAng :hour angle [-] of sun during day
# SolAlt  :solar altitude [deg], height of sun above horizon
# SolDec  = -23.4*cos(360*(Day+10)/365);
# Now added a new function that should work on all latitudes!
theta    =(Day-1)*360/365;  # day expressed in degrees

# Time change equal to 4 min per degree longtitude
# Assume the time input to be GMT
HourS = Hour + (Longitude * 4/60);

SolDec =180/pi * (0.006918-0.399912 * cos(theta)+0.070257 * sin(theta) -   0.006758 * cos(2*theta)+0.000907 * sin(2*theta) -  0.002697 * cos(3*theta)+0.001480 * sin(3*theta));

HourAng = 15*(HourS-12.01);

SolAlt  = scalar(asin(scalar(sin(Latitude)*sin(SolDec)+cos(Latitude)*
           cos(SolDec)*cos(HourAng))));

# Solar azimuth
# ----------------------------
# SolAzi  :angle solar beams to N-S axes earth [deg]
 SolAzi = scalar(acos((sin(SolDec)*cos(Latitude)-cos(SolDec)*
          sin(Latitude)*cos(HourAng))/cos(SolAlt)));
 SolAzi = if(HourS le 12 then SolAzi else 360 - SolAzi);

 Slope = spatial(0.0001);
 Aspect = spatial(1);

# Surface azimuth
# ----------------------------
# cosIncident :cosine of angle of incident; angle solar beams to angle surface
 cosIncident = sin(SolAlt)*cos(Slope)+cos(SolAlt)*sin(Slope)
               *cos(SolAzi-Aspect);

# Radiation outer atmosphere
# ----------------------------
 OpCorr = Trans**((sqrt(1229+(614*sin(SolAlt))**2)
          -614*sin(SolAlt))*AtmPcor);    # correction for air masses [-]
 Sout   = Sc*(1+0.034*cos(360*Day/365)); # radiation outer atmosphere [W/m2]
 Snor   = Sout*OpCorr;                   # rad on surface normal to the beam [W/m2]

# Radiation at DEM
# ----------------------------
# Sdir   :direct sunlight on a horizontal surface [W/m2] if no shade
# Sdiff  :diffuse light [W/m2] for shade and no shade
# Stot   :total incomming light Sdir+Sdiff [W/m2] at Hour
# Radiation :avg of Stot(Hour) and Stot(Hour-HourStep)
# NOTE: PradM only valid for HourStep and DayStep = 1
 Sdir   = if(Snor*cosIncident<0,0.0,Snor*cosIncident);
 Sdiff  = if(Sout*(0.271-0.294*OpCorr)*sin(SolAlt)<0, 0.0,
          Sout*(0.271-0.294*OpCorr)*sin(SolAlt));

# Fill in missing values with areaaaverage
SLDR=cover((Sdir*1),(Altitude * 0) + areaaverage(Sdir*1,boolean(Altitude))); # hourly rad [W/m2]
SLDF=cover((Sdiff*1),(Altitude * 0) + areaaverage(Sdiff*1,boolean(Altitude))); # hourly rad [W/m2]

SL   = SLDR + SLDF;       # Total rad  in [W/m2]



			 SLDF;       # Total rad  in [W/m2]



			]]></text>
		</pcrModel>
	</pcrTransformationSet>
</pcrTransformationSets>

Points precipitation to grid example

Code Block
xml
xml
<?xml version="1.0" encoding="UTF-8"?>
<pcrTransformationSets xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.wldelft.nl/fews
http://fews.wldelft.nl/schemas/version1.0/pcrTransformationSets.xsd" version="1.1">
	<logLevel>WARN</logLevel>
	<pcrTransformationSet id="Thiessen">
		<areaMap>
			<locationId>FineGrid</locationId>
		</areaMap>
		<definitions>
			<dataExchange>memory</dataExchange>
			<inputVariable variableId="P" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>ImportPubRts</moduleInstanceId>
					<valueType>scalar</valueType>
					<parameterId>P.obs</parameterId>
					<locationSetId>MetGauges_P.obs</locationSetId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="10"/>
					<relativeViewPeriod unit="hour" start="-96" startOverrulable="true" end="0"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<outputVariable variableId="MeasMap" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>PrecipitationGaugeToGrid_Historical</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>P.obs</parameterId>
					<locationId>FineGrid</locationId>
					<timeSeriesType>simulated forecasting</timeSeriesType>
					<timeStep unit="minute" multiplier="10"/>
					<relativeViewPeriod unit="hour" start="-96" end="0" startOverrulable="true"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
		</definitions>
		<pcrModel id="String">
			<text><![CDATA[#! --unittrue --degrees
dynamic
# Simple Thiesen polygons to get spatial average precipitation on a grid

# Creat unique Id's for input stations
Unq = uniqueid(boolean(P));
# Now generate polygons and fill those
GaugeArea = spreadzone(ordinal(cover(Unq,0)),0,1);
MeasMap = areaaverage(P,GaugeArea);	
]]></text>
		</pcrModel>
	</pcrTransformationSet>
</pcrTransformationSets>

PCRaster installation

For 64 bit support PCRaster needs to be installed manually. See: PCRaster