EPA SWMM Python adapter

In 2020 a Model Adapter for the EPA SWMM model was developed by Matrix Solutions requested by Toronto and Region Conservation Authority. The
Model Adapter was developed in Python 3.8 based on current best practices and the source is published on Github under the MIT license.

The Model Adapter provides the following options and restraints:

Hydrometeorological forcing is limited to rainfall
Since EPA SWMM in general is applied as event model, the model adapter does not provide state management
Conversion of rating curves
Conversion of time-dependent rule curves
Conversion of model log messages, in addition to logging of the model adapter
Conversion of model output (discharges and water levels) to NetCDF:
o Links: Date, Time, Flow, Velocity, Depth m, Capacity/Setting
© Nodes: Date, Time, Inflow, Flooding CMS, Depth, Head
® Optional: running of the model

This page describes the configuration of the General Adapter. This example was set-up as a template, where the name of the specific model is inserted via
the $BASINS variable. Information on the functionality of the model adapter, and guidance for preparing the model are described in XXX.

Folder structure

v - Modules The Model Adapter was developed to deal with a model structure as shown here. Both the model
adapter and the SWMM executable reside in the bin folder, which is on the same level as model folders.
v l SWMM In this example there is one model folder: Don. The model folder contains separate folders for input,

logs, model files and output.

B bin
v M Don

W input
B og
B model

l output

bin: common executable files to all models

® EPA SWMM executable (SWMM5.exe and SWMM5.dII; version 5.1.012)
® Compiled model adapter executable (epaswmm.exe)

<model>: all files relating to a specific EPA SWMM model (i.e. Don River Model).

® Run Information (run_info.xml) in FEWS XML format
® dump: zipped folders of the model folder when the model run fails
® input: model inputs, exported by FEWS:
© Rainfall Timeseries (e.g. rain.nc) in FEWS NetCDF Format
© Rating Curves (e.g. dam_rating_curve.xml) in FEWS XML format (optional)
© Control Rules (e.g. control_rules.xml) in FEWS XML format (optional)
® inputStates: placeholder directory for potential handling of hotstarts
® |og:
© Model adapter logs:
" Pre-adapter (pre_adapter.log)
= Post-adapter (post_adapter.log)
" Model run (run_adapter.log)
" OQutput diagnostic file to be imported by FEWS (e.g. diag.xml)
®* model: EPA SWMM model files
© Model input file (e.g. DonRiver.inp)
© Model rainfall data file (e.g. rain.dat)
© Model output file (e.g. DonRiver.rpt)
© Model run batch file (run_model.bat)
O Unit conversion look-up (UDUNITS_lookup.csv)

output: output from the model adapter (converted output for FEWS)

General section

The code block below contains an example for a general section of the General Adapter.

http://rain.nc

<gener al >
<descri pti on>PCSWM Model for $BASI N$</descri pti on>
<pi Ver si on>1. 5</ pi Ver si on>
<!--Root dir set to nodel folder, because SWW exe requires rootDit as currentdir-->
<r oot Di r >¥REG ON_HOVE% Mbdul es/ SWWM $BASI N$</ r oot Di r >
<wor kDi r >%REG ON_HOVEY Modul es/ SWWM $BASI N$/ nodel </ wor kDi r >
<export Di r >%00T_DI R% i nput </ exportDi r>
<export Dat aSet Di r >¥R00T_DI R%</ expor t Dat aSet Di r >
<export | dMap>l dPCSWWW/ export | dMap>
<i nport Di r >%R00T_DI R% out put </ i nportDi r>
<i nmport | dMap>l dPCSWMVK/ i npor t | dvap>
<i nport Uni t Conver si onsl d>I nport Uni t Conver si ons</ i nport Uni t Conver si onsl d>
<dunpFi | eDi r >$GA_DUVMPFI LEDI R$</ dunpFi | eDi r >
<dunpDi r >%R0O0T_DI R%/ dunpDbi r >
<di agnosti cFi | e>%R00T_DI R% | og/ di ag. xm </ di agnosti cFi |l e>
<m ssVal >NaN</ mi ssVal >
<ti meZone>
<ti meZoneName>GMI</t i meZoneNane>
</timeZone>
<st art Dat eTi meFor mat >yyyy- MMt dd hh: nm ss</ st art Dat eTi meFor nat >
</ general >

Some specific settings are required for this model:

The Rootdir needs to be the model folder. This is essential due to the SWMM executable needing this folder as current dir.
the WorkDir needs to point to the folder with the model files

the exportDir and importDir need to point to the input and output folder

the diagnosticsfile needs to point to the log/diag.xml file

TimeZone needs to be in GMT, because the Model Adapter expects and writes in GMT time

StartupActivities (optional)

the following settings are optional, but good practice:

<start UpActivities>
<purgeActivity>
<filter>%R0O0T_DI R% output/*.*</filter>
</ purgeActivity>
<purgeActivity>
<filter>%RO0T_DI R% i nput/*.*</filter>
</ purgeActivity>
<purgeActivity>
<filter>%RO0OT_DIR¥% | og/*.*</filter>
</ purgeActivity>
<purgeActivity>
<filter>%R0O0T_DI R¥% nodel / *. *</filter>
</ purgeActivity>
</startUpActivities>

ExportActivities

Runinfo.xml

The Model Adapter uses the runinfo.xml file to determine the specific features of the model simulation. The Runinfo.xml file needs to be exported to the
rootDir.

<export RunFi | eActivity>
<export Fi | e>%R00T_DI R% r un_i nf o. xm </ exportFil e>
<properties>
<string key="nodel - execut abl e" val ue="%REQ ON_HOVE% Modul es/ SWMM bi n/ swmb. exe"/ >
<string key="swim.input_file" val ue="9%NORK_Dl R/ $BASI N$. i np"/ >
</ properties>
</ export RunFi | eActivity>

Next to information such as model folder, start and end time of the model simulation, the Model Adapter needs to additional properties:

* model-executable: path to the SWMM executable, in case the model adapter is used to run the model
* swmm_input_file: the full path to the model file

Rainfall

The following code block contains an example for the export of the rainfall forcing. The export should be a NetCDF file. The Model Adapter will read the
filename from the Runinfo.xml:

<inputNetcdfFile>C...\input\rain.nc</inputNetcdfFile>

<export Net cdf Acti vity>
<exportFil e>rain.nc</exportFile>
<timeSeriesSet s>
<ti meSeriesSet >
<nodul el nst ancel d>$BASI N$_For ecast _pr epr ocess_NWP</ nodul el nst ancel d>
<val ueType>scal ar </ val ueType>
<par anet er | d>$PARAMETERS$</ par anet er | d>
<l ocati onSet | d>$BASI N$_subcat chnent s</ | ocati onSet | d>
<timeSeriesType>si nul ated forecasting</tineSeriesType>
<tinmeStep unit="hour"/>
<readWiteMde>read conpl ete forecast</readWiteMde>
</tineSeriesSet>
</timeSeriesSet s>
</ export Net cdf Acti vity>

IdMapping is required to map the average rainfall per subcatchment to the raingauges configured in the model:

<function internal Locati onSet="Don_subcat chnents" external Locati onFuncti on="Don_@EXTERNAL_| D@
ext er nal Par anmet er Functi on="P" i nternal Paranet er =" PC. nwp" internal Qualifier="DPS"/>

Control Rules (optional)

Control rules (time-dependent) can be exported, in order to have some control on structures in the model. The model needs to be set-up specifically to be
able to use this functionality. This functionality has been developed aiming at changing the settings of a structure at specific moments: therefore the
exported timeseries can be non-equidistant (equidistant is also possible).

<export Ti meSeri esActivity>
<exportFile>Control _rul es. xm </ exportFile>
<timeSeriesSets>
<ti meSeriesSet >
<nmodul el nst ancel d>Don_For ecast </ nodul el nst ancel d>
<val ueType>scal ar </ val ueType>
<par anet er | d>Fr acti on</ paraneter | d>
<l ocati onl d>HY027wl </ | ocati onl d>
<timeSeriesType>external historical</timeSeriesType>
<ti meStep unit="nonequidistant"/>
<rel ativeViewPeriod unit="day" start="-1" end="2" startOverrul abl e="fal se"
endOverrul abl e="true"/>
<readWiteMde>add ori gi nal s</readWiteMde>
</tinmeSeriesSet >
</tinmeSeriesSets>
</ export Ti meSeri esActivity>

The file will only be read by the Model Adapter if it is named Control_rules.xml.

An Id map is required to map the location and structure type with that in the model. The external parameter needs to be the object type.

http://rain.nc

<map internal Location="HY027wW " i nternal Paraneter="Fracti on" external Locati on="0L341" external Paranet er =" OUTLET"
/>

the following object types are supported: pump, orifice, weir or outlet.

Rating Curves (optional)

Rating curves can be exported to replace existing rating curves in the model.

<exportRatingCurveActivity>
<exportFil e>Dam rating_curve. xn </ exportFil e>
<l ocat i onl d>HY027W </ | ocat i onl d>

</ export RatingCurveActivity>

The model adapter will check the runinfo.xml file for an <inputRatingCurveFile>element. If so, it will try to read and convert the content of the file.

Notice that an IdMapping is necessary to map the internal location with the Id in the model:

<l ocation internal ="HY027W " ext er nal =" GRossDani'/ >

Export ModuleDataSet (optional)

It is possible to export a ModuleDataSet containing the model file itself, directly into the model folder. This can be used to have the forecaster a model file
with a different initial model state (eg dry, normal, wet). These files need to be included in the ModuleDataSets folder in the config folder, and can be
configured as what-if scenarios.

<export Dat aSet Acti vity>
<nmpdul el nst ancel d>$nodul edat aset $</ nodul el nst ancel d>
</ export Dat aSet Acti vi ty>

Notice that the Model Adapter is not involved in this activity.

Execute Activities

The General Adapter has three execute activities:

1. run the pre adapter
2. run the model
3. run the post adapter

Pre adapter

First the Model Adapter is started. It gets the location of the runinfo.xml passed as argument, as well as "pre" indicating it should run as preadapter.

<execut eActivity>

<conmmand>
<execut abl e>%REQ ON_HOVE% Modul es/ SWWM bi n/ epaswrm exe</ execut abl e>

</ conmand>

<ar gunent s>
<ar gunent >- - run_i nf o</ ar gument >
<ar gunment >%00T_DI R% r un_i nf o. xnl </ ar gunent >
<ar gunent >pr e</ ar gunent >

</ ar gunent s>

<ti meQut >5000000</ti neCut >

</ execut eActi vity>

https://publicwiki.deltares.nl/display/FEWSDOC/03+What-If+Scenario+Display+-+EOL+2022.02

Model simulation

The next activity is starting the model simulation itself. This can be done by the model adapter itself, but to keep control it is also possible to run the
SWMM executable independently. The SWMM exe needs two arguments: the model file itself, and the name of the file in which the simulation output need
to be written.

<execut eActivity>
<conmmand>
<execut abl e>%REG ON_HOVE% Modul es/ SWWM bi n/ SWWb. exe</ execut abl e>
</ conmand>
<ar gunment s>
<ar gunment >9M\0ORK_DI R% $BASI N$. i np</ ar gurent >
<ar gunment >%\ORK_DI R% $BASI N$. r pt </ ar gunent >
</ ar gunent s>
<ti meQut >5000000</ti neCut >
<i gnor eDi agnosti cs>true</i gnoreDi agnosti cs>
</ execut eActivity>

Notice that ignoreDiagnostics needs to be set to true, since the model does not return a log in PI-XML format.

Post Adapter

After the model simulation the Model Adapter will be executed again, this time with argument "post". It will convert the model output to NetCDF format and
the model log messages to PI-XML.

<execut eActivity>

<conmmand>
<execut abl e>%REQ ON_HOVE% Modul es/ SWWM bi n/ epaswrm exe</ execut abl e>

</ conmand>

<ar gunent s>
<ar gunent >- - run_i nf o</ ar gument >
<ar gunment >%00T_DI R% r un_i nf o. xnl </ ar gunent >
<ar gunent >post </ ar gunent >

</ ar gunent s>

<ti meQut >5000000</ti neCut >

</ execut eActi vity>

Import model results

The ImportActivities only include the reading of the output timeseries. Notice that the importFiles have the name of the model file with postfix
"output_nodes" and "output_links". The Model Adapter has converted all the output of the model: with ID mapping in FEWS can be determined what model
results are actually imported.

<i nport Pi Net cdf Acti vity>
<i nport Fi | e>$BASI N$_out put _nodes. nc</i nportFil e>
<timeSeriesSets>
<ti meSeriesSet >
<nodul el nst ancel d>$BASI N$_For ecast _NWP</ nodul el nst ancel d>
<val ueType>scal ar </ val ueType>
<par anet er | d>H. si nx/ par anet er | d>
<qual i fierl d>NWP</ qual i fierld>
<l ocat i onSet | d>SWWM $BASI N$_H</ | ocat i onSet | d>
<tinmeSeriesType>si nul ated forecasting</tineSeri esType>
<timeStep unit="mnute" multiplier="15"/>
<readWiteMde>add ori gi nal s</readWiteMde>
</tinmeSeriesSet>
</tinmeSeriesSet s>
</inportPi Net cdf Activity>
<i nport Pi Net cdf Activity>
<i nport Fi | e>$BASI N$_out put _I i nks. nc</i nportFil e>
<ti meSeriesSet s>
<timeSeriesSet >
<nmodul el nst ancel d>$BASI N$_For ecast _NWP</ nodul el nst ancel d>
<val ueType>scal ar </ val ueType>
<par anet er | d>Q si nx/ paranet er| d>
<qual i fierl d>NWP</ qual i fierld>
<l ocati onSet | d>SWWM $BASI N$_Q</ | ocat i onSet | d>
<tineSeriesType>sinul ated forecasting</tineSeriesType>
<tinmeStep unit="mnute" multiplier="15"/>
<readWiteMde>add ori gi nal s</readWiteMde>
</tinmeSeriesSet>
</tinmeSeriesSet s>
</inport Pi Net cdf Acti vity>
</inportActivities>

Of course also here IDmapping is required. Important to notice is that SWMM exports the results at nodes and links with a prefix "Node_", "Link_"
respectively, what is also reflected in the example below.

<function internal Locati onSet ="SWW Don_H"' ext ernal Locati onFuncti on="Node_@ D_SWM H@
ext er nal Par armet er Funct i on="Head" i nternal Paraneter="H. sini/>

<function internal Locati onSet ="SWM Don_Q' external Locati onFuncti on="Li nk_@ D_SWM Q@
ext er nal Par anet er Functi on="Fl ow' i nternal Paraneter="Q sini/>

	EPA SWMM Python adapter

