20 Delft-FEWS as Command Line Runnable : Data
Conversion Module - DCM

® [ntroduction
® Binaries / installation
® Configuration
© File structure of DCM after installation
© DCM configuration file
PurgeActivity:
CopyActivity:
WorkflowActivity:
MoveActivity:
ImportStatusActivity:
® RunlnLoopActivity:
O Configuration of DCM: conversion task variants
® Variant 1: Import, Export.
® Variant 2: Import, Transformation, Export.
® Variant 3: Import, (dis)Aggregation, Export.

® Runthe DCM

Introduction

The Data Conversion Module (DCM) is a generic application with which timeseries data can be converted. The DCM is a ‘stripped’ version of Delft FEWS
and therefore supports the same import and export file formats. It is also possible to perform some transformations that are available in the transformation
module of Delft-FEWS.

Basically the DCM ensures that (1) Delft-FEWS starts up, (2) that the relevant workflows are run and (3) that Delft-FEWS is shut off. The workflows contain
tasks that ensure the import of the available import files, the conversion of these imported files and finally the export of the converted files to an export
folder. One of the basic DCM-properties is the deletion of the Delft-FEWS database (or localDataStore) after each DCM run. This means that information
from previous DCM runs is not available.

The DCM can be used in combination with the Data Interface Module (DiM). The interaction between the DiM and the DCM is illustrated in Figure 1.1. The
DiM collects data from an external source and puts these files into a predefined import folder. This import folder contains a sub-folder for each datafeed.
The DCM imports all files from this import folder and carries out the required conversions on the data. The results of these conversions are being exported
in the desired file format to a predefined export folder. The DiM collects the data from this location and distributes it to the data destination.

Data source (external location) Data destination (internal location)
Data interface Module Data interface Module
(DiM) (DiM)

Data Conversion Module (DCM)

Import files Export files
Import Folder Export Folder
Import_datafeed_1 Export_datafeed_1
Import_datafeed_2 Export_datafeed_2
Import_datafeed_3 Export_datafeed_3

)

Figure 1: lllustration of interaction between Data Interface Module (DiM) and Data Conversion Module (DCM).

Binaries / installation

For FEWS versions 2018 and earlier The DCM had a separate bin folder and its own patches and was using the installed Java runtime version 1.8 (or
earlier) These can still be requested through FEWS Support.

Starting with FEWS release 2019.02 rather then distributing a separate bin folder (which would need to include Java 11 runtime files) the choice was made
to include DCM in the main FEWS distribution. The code of the data conversion module is now part of the main Delft_ FEWS.jar and is run using the Delft-
FEWSc.exe executable. The deliverable package for DCM that can be requested through FEWs support now contains a standalone configuration to use
as a template for you project and a startup script (DataConversion.sh / DataConversion.bat) that you can use to start the DCM.

To install the DCM, the procedure is pretty much like any FEWS installation, the main difference difference is that after installing a base-build, you request
from the same branch the data conversion package, with the file name dataconversion-stable-NNNN,NN.zip (where NNNN.NN is the FEWS version
number) and unzip this as your region home folder. Then finally you get the latest FEWS patch for the given branch, however instead of putting the patch
in the region home folder you need to put it in the main DCM folder and rename it to patch.jar.

Configuration

File structure of DCM after installation

Figure 2: Overview of directory structure after installation of the DCM.
After installation of the DCM your system will contain the following files (see Figure 2):

bin Directory containing the FEWS distribution (2019.02 or newer)

patch.jar latest patch file for this FEWS distribution

DataConversion_SA FEWS Region Home directory for the DCM (contains the XML-configuration files)
DataConversion.bat Script file needed to run DCM on a Windows machine

DataConversion.sh Script file needed to run DCM on a Linux machine

This is the complete set of files needed to run the DCM, the FEWS . In the directory DataConversion_SA one can find all configuration files of the DCM
(see Figure 3). The DCM configuration is based upon the Delft-FEWS configuration; this implies that its configuration is distributed over several
configuration files. All configuration files are written in XML format.

Mame Date modified Type Size

. Config 05-Jun-14 3:55 PM File folder

J Export 05-Jun-14 8:55 AM File folder

| ExportTemp 05-Jun-14 9:55 AM File folder

| Import 05-Jun-14 8:55 AM File folder

J ImportStatus 05-Jun-14 9:55 AM File folder

J localDataStore 05-Jun-14 3:59 PM File folder

, Logs 05-Jun-14 8:55 AM File folder

, Outputfiles 05-Jun-14 9:55 AM File folder

J TestData 05-Jun-14 3:57 PM File folder
dataconversicn 05-Jun-14 3:53 PM XML Document 1KB
E dataconversion 16-Jan-14 7:56 AM W3C XML Schema 11 KB
|| global.properties 29-Apr-1410:16 AM PROPERTIES File 1KB
[log 05-Jun-14 3:58 PM TXT File 380.757 KB
LogdjConfig 31-Jan-14 4:33 PM AML Document 1 KB

Figure 3: Example of DataConversion_SA directory. Note the dataconversion.xml in the root configuration.

DCM configuration file

In Figure 3 the dataconversion file can be distinguished, this file is the DataConversion configuration file. The DCM configuration file contains all required
instructions in order to run the DCM. This configuration file is an XML file that is structured according to the schema file ‘dataconversion.xsd’ which can be
found in the release package.

<conpl exType nane="Dat aConver si onConpl exType" >
<sequence>
<el enent name="cl ear OnStartup" type="bool ean" defaul t="true" m nQccurs="0">
<annot at i on>
<docunent ati on>Control if |local datastore is cleared on startup. By default eacht new run
of the
DCMw || start with an enpty datastore. </ docunentation>
</ annot at i on>
</ el enent >
<el enent nanme="activities" type="fews: ActivitiesConpl exType"/>
</ sequence>
</ conpl exType>
<I--WtrActivitiesConpl exType -->
<conpl exType nane="Activiti esConpl exType">
<sequence>
<choi ce mi nCccurs="0" maxQccur s="unbounded" >
<el enent name="purgeActivity" type="fews: PurgeActivityConpl exType">
<annot at i on>
<docunentati on>Purges a single file or a set of files within a directory. <
/ docunent at i on>
</ annot ati on>
</ el enent >
<el enent nane="copyActivity" type="fews: CopyActivityConpl exType">
<annot at i on>
<docunent ati on>Copi es single file or a set of files fromsource directory to a
destination
directory. It is possible to add prefix or suffix to original file nanes.<
/ docunent at i on>
</ annot at i on>
</ el enent >
<el enent nane="wor kf | owActivity" type="fews: Workfl owActi vi t yConpl exType" >
<annot at i on>
<docunent ati on>Defi ne FEWS wor kfl ow to run. </ docunent ati on>
</ annot at i on>
</ el enent >
<el enent nane="noveActivity" type="fews: MoveActivityConpl exType">
<annot at i on>
<docunent ati on>Move single file or a set of files fromsource directory to a destination
directory. </ docunent ati on>
</ annot at i on>
</ el enent >
<el enent nane="inportStatusActivity" type="fews:|nportStatusActivityConpl exType">
<annot at i on>
<docunent ati on>Exports the inport status to file. Wien running inport in |oop inport
status
must be run</docunentation>
</ annot at i on>
</ el enent >
<el enent name="runl nLoopActivi tyRunner" type="fews: Runl nLoopActi vi t yRunner Conpl exType" >
<annot at i on>
<docunent ati on>Repeats the sub activities until their run method returns 'false'.<
/ docunent ati on>
</ annot at i on>
</ el enent >
</ choi ce>
</ sequence>
</ conpl exType>

Figure 4: DataConversion schema
As of version 2015.02 the configuration file offers the option ‘clearOnStartup' which makes the deletion of the local datastore at startup configurable.

The DataConversion configuration file contains a list of activities which will be run sequentially. There is no limit to the number and order of the activities. It
is possible to choose from the following list of activities:

PurgeActivity:
With this activity it is possible to delete both files and directories. This activity supports the wildcards ‘?" and “*'.

This activity contains the following fields:

" id: required idendifier.
® description: optional information
= purgeFilePath: path to files that are to be deleted. Wildcards accepted.

E] sttributes

(PurgeActivityComplexType R EEEE R

= fews:purgeFilePath

Generated by XMLSpy www.altova.com

Figure 5 DataConversion purge activity
CopyActivity:

With this activity it is possible to copy files from one location to another. This activity supports the wildcards *?’
and .

This activity contains the following fields:

" id: required idendifier.

® description: optional information

= srcFilePath: path to files that are to be copied. Wildcards accepted.

= destFilePath: path to destination directory. No wildcards allowed.

" prefix: optional text that can be added before the name of the destination file.
= suffix: optional text that can be added after the name of the destination file.

n

setCurrentFileNameProperty: option that sets the name of the file currently being copied as a global property. This property can then be used in
the configuration of other activities. This option only works when this activity is nested in a ‘runinLoopActivityRunner’ activity.

Example setCurrentFileNameProperty

<runl nLoopActi vi tyRunner id="runlnLoop">
<activities>

<! —This CopyActivity will copy all XML files formthe Inport/aquo directory. However because

The activity is being run in a loop each file will be copied individually. By setting the property
'setCurrentFil eNaneProperty' the name of the file being copied will be napped to the key CURRENT_FILENAVE. This
key can then be used by the other activities as shown below. -->

<copyActivity id="IoopedCopy">
<sr cFi | ePat h>%REGA ON_HOVE% Test Dat a/ | mport / aquo/ *. xml </ srcFi | ePat h>
<dest Fi | ePat h>$l MPORT_FOLDER_ROOT$/ aquo/ </ dest Fi | ePat h>
<set Current Fi | eNanePr oper t y>CURRENT_FI LENAME</ set Curr ent Fi | eNarrePr operty>
</ copyActivity>
<nmoveActivity id="| oopedMove" >
<sr cFi | ePat h>$EXPORT_FOLDER _ROOT $/ aquo/ *</ srcFi | ePat h>
<dest Fi | ePat h>$BACKUP_FOLDER_ROOT$/ aquo/ $CURRENT_FI LENAVES. xml </ dest Fi | ePat h>
</ moveActivity>

B attributes

|:C opyActivityComplexType |:'l]—

Generated by XMLSpy www.altova.com

Figure 6 DataConversion copy activity

WorkflowActivity:

With this activity FEWS workflows can be run.

This activity contains the following fields:

= description: optional information
= workflowld: id of workflow to be run

4~ fews:description .
1

[Worlr.fl owhActivityComplexType [TI]—(—H-—

= fewsworkflowld

Generated by XMLSpy www.altova.com

Figure 7 DataConversion workflow activity

MoveActivity:

With this activity it is possible to move files from one location to another. This activity supports the wildcards
‘2" and .

This activity contains the following fields:

id: required idendifier.

description: optional information

srcFilePath: path to files that are to be copied. Wildcards accepted.

destFilePath: path to destination directory. No wildcards allowed.

setCurrentFileNameProperty: option that sets the name of the file currently being moved as a global property. This property can then be accessed
by other activities. This option only works when this activity is nested in a ‘runinLoopActivityRunner’ activity.

B attributes

(M oveActivityComplexType [TI:I—

Generated by XMLSpy www.altova.com

Figure 8 DataConversion move activity

ImportStatusActivity:

With this activity the content of the ImportStatus table can be exported to CSV file. The ImportStatus is
information produced by the Delft FEWS import modules, describing basic information about the last import
run.

This activity contains the following fields:

id: required idendifier.

description: optional information

importStatusPath: path to the directory in which status file is to be generated.

dataFeedld: option to filter the ‘dataFeedld’ values that are to be exported to file. If omitted all available datafeed information will be exported.

& sttributes

(ImportStatusAc’tivitl_.rCDmplexTyr... E]—

Generated by XMLSpy www.altova.com

Figure 9 DataConversion import status
RuninLoopActivity:

With this activity one or more of the above can be run repeatedly. This activity will keep looping over the sub
activities until one of the sub activities indicates that it has completed all its loops or until the ‘timeOut’ has
been exceeded.

This activity contains the following fields:

" id: required idendifier
® description: optional information
= activities: list of activities over which to loop

" timeOutSeconds: option timeout in seconds after which looping is terminated.

B attributes

(FtunlnLoopActiuitl_.rRunnerC ompl... [TI:I—

fews:ActivitiesComplexType
e

.L{ fews activities E'T[*E '—/-EI— - I

Generated by XMLSpy www.altova.com

Figure 10 DataConversion run in loop activity

Configuration of DCM: conversion task variants

The DCM makes use of the file based Delft-FEWS configuration. Hence, all modules that are available in Delft-FEWS can also be used for the DCM. The
configuration is located in the Config directory of the 'region_home' directory (see Figure 2). In this section some general remarks about the Delft-FEWs
configuration in relation to the DCM can be found. We do this by defining three 'conversion tasks' with increasing complexity:

® Variant 1: workflow with import and export module.
® Variant 2: workflow with import, transformation (only on new data) and export module.
" Variant 3: workflow with import, transformation (on new data and on data of previous DCM runs) and export module .

Variant 1: Import, Export.

This is the simplest workflow variant. The workflow only consists out of an import and an export module. This variant can be used when the original import
files already have the correct timestep and when location specific transformations are not needed. In this case the DCM is mainly used to convert the file
format of the import files. In the Figure below a schematic illustration of this workflow variant is given.

Data Conversion Module (DCM)

~——-t-->> Import Module Export Module — [----1 -
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
Import files Export files I
|
1
Import Folder Export Folder !
1
1
Import_datafeed 1 D Export_datafeed 1 i
----- I
Import_datafeed 2 D Export_datafeed 2 [€--- ;
Import_datafeed 3 D Export_datafeed 3

Figure 11 Simplest workflow variant in DCM. The DCM is only used for conversion of the file format, there is no need for transformations.

The DCM support the TimeSeriesImportRun module. This implies that all import types available within Delft-FEWS are also available to the DCM. To
minimize the amount of configuration, it is possible to configure imports without having to specify the timeseries information in the import module. Here is
an example for importing PI-Xml:

TimeSeriesimportRun in DCM

<?xm version="1.0" encodi ng="UTF- 8" ?>
<tinmeSerieslnmportRun xm ns="http://ww. w del ft.nl/fews" xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
XSi :
schemalLocati on="http://ww. W del ft.nl/fews http://fews.w del ft.nl/schenas/versionl.0/tinmeSerieslnportRun.xsd">
<i nport >
<general >
<i nport Type>LmM\éat her dat a</ i nport Type>
<f ol der >$| MPORT_FOLDER_ROOT$/ LMV maasaa</ f ol der >
<i dMapl d>I dI mport _LMAreasaa</ i dvapl d>
</ general >
<t enpor ar y>t r ue</ t enpor ar y>
</inport>
</tineSeriesl nmport Run>

In the above example it can be seen that the configuration of TimeSeriesSets has been replaced by the element ‘temporary’. This way it is no longer
necessary to configure locations and parameters in the RegionConfig directory. These are generated on-the-fly during the import process. All imported
data is stored as temporary data and will only be available to other tasks that are being executed within the same workflow as the import module.
However, if you want to make use of the locationSets than it is necessary to configure both the locations and the locationSets in the RegionConfig
directory.

As is the case with the import run, the export no longer requires the configuration of TimeSeriesSets. The export run will automatically export all data
imported in the previous import actions of the same workflow run.

TimeSeriesExportRun in DCM

<timeSeriesExport Run xm ns="http://ww. W del ft.nl/fews" xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://ww. w del ft.nl/fews
http://fews.w del ft.nl/schemas/versionl. 0/tineSeri esExportRun. xsd">
<export>
<general >
<export Type>NETCDF- CF_TI MESERI ES</ export Type>
<f ol der >$EXPORT_FOLDER_ROOT$/ LMW nmeasaa</ f ol der >
<export Fi | eName>
<name>_LMMmaasaa. nc</ nane>
<prefix>
<tinmeZeroFormattingString>yyyy-Midd T HHmss</ti meZer oFormatti ngStri ng>
</ prefix>
</ export Fi | eName>
<uni t Conver si onsl d>Expor t Uni t Conver si ons</ uni t Conver si onsl d>
<exportM ssi ngVal ueStri ng>-9999. 0</ export M ssi ngVal ueSt ri ng>
<export Ti meZone>
<ti meZoneOf f set >+01: 00</ ti meZoneOf f set >
</ export Ti meZone>
</ general >
<properties>
<bool val ue="fal se" key="incl udeFl ags"/>
<bool val ue="fal se" key="incl udeComments"/>
</ properties>
<met adat a>
<title>Export of LMW nmasaa datafeed</title>
<institution>Deltares</institution>
</ met adat a>
</ export>
</tinmeSeri esExport Run>

Variant 2: Import, Transformation, Export.

The second workflow variant is similar to the first workflow variant. Here, the timestep of the original timeseries is also correct but additional
transformations are required. A transformation module is added to the workflow to allow for location specific conversions (e.g. correction of water level) and
/or the derivation of new timeseries. For the transformation module it remains necessary to explicitly configure TimeSeriesSet information. However it is not
necessary to pre configure parameters and locations in the RegionConfig directory. As long as the required timeseries have been imported during a prior
import run they will be available for the transformation.

In the Figure below a schematic illustration of workflow variant 2 is given:

Data Conversion Module (DCNMN)

Transformation
=1 Import Module Module Export Module -==F==
(location specific)

Import files Export files
Import Folder Export Folder
Import_datafeed 1 D Export_datafeed_1
Import_datafeed 2 D Export_datafeed 2 |€=--+
Import_datafeed 3 D Export_datafeed 3

Figure 12 Using Transformation functionality to change timeseries.

It is possible to filter the data that is to be exported by configuring TimeSeriesSet information. But in that case the locations and
parameter information must be added to the export configuration (see export example in Variant 2). Here is an
example of a Pl-export that includes a filter:

TimeSeriesExportRun in DCM with filter on export

<?xm version="1.0" encodi ng="UTF-8"?>
<tinmeSeriesExport Run xm ns="http://ww. w del ft.nl/fews" xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://ww. w del ft.nl/fews
http://fews.w del ft.nl/schenmas/versionl.0/tineSeriesExportRun. xsd">
<export>
<general >
<export Type>Pl </ export Type>
<f ol der >$EXPORT_FOLDER_ROOT$/ LMN/ | i xhe</ f ol der >
<export Fi | eName>
<nanme>_LMN i xhe. t xt </ nane>
<prefix>
<ti meZeroFormattingString>yyyy- Mtdd' T' HHmss</ti meZer oFormatti ngStri ng>
</ prefix>
</ export Fi | eName>
<uni t Conver si onsl d>Expor t Uni t Conver si ons</ uni t Conver si onsl d>
<export M ssi ngVal ueSt ri ng>-9999. 0</ export M ssi ngVal ueStri ng>
<export Ti meZone>
<ti meZoneOf f set >+01: 00</ti meZoneOf f set >
</ export Ti meZone>
</ general >
<properties>
<bool val ue="fal se" key="incl udeFl ags"/>
<bool val ue="fal se" key="incl udeComrents"/>
</ properties>
<met adat a>
<title>Export of LMWIixhe datafeed</title>
<institution>Deltares</institution>
</ met adat a>
<ti meSeriesSet >
<nmodul el nst ancel d>LMN/ i xhe_i nt er pol ati on</ nodul el nst ancel d>
<val ueType>scal ar </ val ueType>
<par anet er | d>C1OP</ par anet er | d>
<l ocationSet | d>LMN i xhe</| ocati onSet | d>
<timeSeriesType>tenporary</tineSeri esType>
<tinmeStep unit="mnute" multiplier="10"/>
<rel ativeVi ewPeriod unit="hour" start="-3" end="0"/>
<readWiteMde>read conpl ete forecast</readWiteMde>
</tinmeSeriesSet>
</ export>
</tineSeri esExport Run>

Variant 3: Import, (dis)Aggregation, Export.

The third workflow variant is used when the original import data does not have the appropriate timestep. In Delft-FEWS it is relatively simple to convert the
original import data to the appropriate timestep by using a (dis-)aggregation function.

However, in order to perform a (dis-)aggregation it is necessary to have data for multiple timesteps. In an operational system the following aspects have to
be taken into account:
= |tis likely that external data is delivered per timestep. Hence, these files only contain data for one single
timestep.
= One of the characteristics of the DCM is that it removes all information from its localDataStore when
Delft-FEWS is closed. Consequently, import files from previous DCM runs are not available in the
current DCM run.

This means that simply adding a (dis-)aggregation transformation will not work because there is only information for a single timestep. In order to prevent
this problem several modules are added to the workflow which enable the ‘storage’ of information from previous timesteps.

In Figure 13 a schematic illustration of this third workflow variant is given. In this workflow an additional import from the back-up folder is added. The files
from the back-up folder contain the import data from the previous DCM runs. In the second step of this workflow the files from both imports are merged.
The merge transformation contains a hierarchy which states that the (new) import data is more important than the (old) back-up import data. The result of
this merge transformation is a new timeseries which contains both new and old import data. Part of this new timeseries is exported to the back-up folder to
serve as back-up timeseries in the next DCM run.

https://publicwiki.deltares.nl/display/FEWSDOC/Merge+Transformations

This approach guarantees the availability of a timeseries that contains data for multiple timesteps. It is now possible to carry out a (dis-)aggregation
transformation to convert the import data to the appropriate timestep.

Back-up files

Back-up Folder

D Export_datafeed_1
D Export_datafeed 2
Ij Export_datafeed 3

Data Conversion Module (DCM)
Export Module
Import Module
(Back-up data) \
Transformation Transformation
Module Module —>| Export Module
Merge imports (dis-) Aggregation
Import Module /
(New import data)
Import files Export files
Import Folder Export Folder
Import_datafeed_1 D Export_datafeed_1
Import_datafeed_2 Ij Export_datafeed_2
Import_datafeed 3 Ij Export_datafeed 3

Figure 13 This construction is needed whenever functionalities are used that need data from previous DCM runs. The extra export/import routine ensures
that the user has data from previous DCM runs.

Run the DCM

The DCM can be executed as a script from the command line or as a scheduled task (see Figure 2 for the location of these files).

® On a Windows machine the DCM is run using the BATCH file: DataConversion.bat
® On a Linux machine the DCM is run using the bash script file: DataConversion.sh

Both scripts require the same arguments:

® regionpath=<name or path>: Name of region directory containing all configuration files (DataConversion_SA). If the region directory is not located
in the same directory as the script then a path is required.

® configfile=<name or path> : Name of the DCM configuration file (here we use the dataconversion.xml). If the DCM configuration file is not
located in the root of the region directory then a path is required.

® workflowid=<identifier> : Identifier of workflow that is to be run. This argument is required when the 'configfile' is not provided. Can be
comma separated array of workflow ids.
® importpath=<path> : Path to folder containing import files. The value of this argument will overrule global property

IMPORT_FOLDER_ROOT. It is therefore necessary that this property is configured in the global.properties file. Furthermore this argument only
works in combination with ‘workflowid' argument.

® exportpath=<path> : Path to where export files will be written. The value of this argument will overrule global property
EXPORT_FOLDER_ROOT. It is therefore necessary that this property is configured in the global.properties file. Furthermore this argument only
works in combination with ‘workflowid' argument.

® systemtime=<timestamp> : Timestamp value (yyyy-MM-dd HH:mm:ssZ) to be used as System Time when running workflows. (note: Z for non-
GMT time zones needs to be replaced by the timezone offset, i.e. +1000 for CET)

® binpath=<name or path> : Path to the directory containing the Delft-FEWS binaries (bin). This argument is configured in the script files.
® clearonstart=<true or false> : Option to turn off deletion of local datastore on startup. default is true.
® compact=<true or false> : Option to compact the datastore on startup using a 'rolling barrel algorithm. default is false.
* loglevel=<error, warn, info or debug> : option to set the log level, default is info. You can set it to 'debug’ for troubleshooting, 'warn' or even 'error'
to filter out non-critical information.
B Administrator: C:\Windows\System32\cmd.exe. |E|E‘éj

Microsoft Windows [Version 6.1.76611
Copyright (c> 2089 Hicrosoft Corporation. A1l rights resepved.

d: ~8_FEWS\DCH_ComponentTest \DataConversion_SA*DataConversion.bat regionpath=DataConversion_8A configfile=dataconversion.xml systemtime="2014-01-23 20:06: bA+BAOA"

Figure 14: Screenshot of the command prompt when running the DCM on a Windows machine.

http://mmssZ

	20 Delft-FEWS as Command Line Runnable : Data Conversion Module - DCM

