Integrated Reservoir Model

® [ntroduction
® Directory structure
® General Adapter configuration

© general
© idMapping
O exportStateActivity
O exportTimeSeriesActivity
© exportRunFileActivity
O executeActivity
O importActivity
® Model
© Schema
© = general
" reservoir
® general
© poolRoutingScheme
o levelPoolMethod
© backwardEulerMethod
© dynamiclinterpolation
© interpolationMethod
O elevationinterval
o extrapolationMethod
® storageCharacteristics
® uncontrolledOutlet
L]

input / output variables and files
® State values
© Reservoir Model specifics
® Ensembles
® [n-Memory execution

Introduction

The Integrated Reservoir Model is a General Adapter module written in Java, developed by Deltares. The model class is part of the Delft-FEWS code base.
The Reservoir model is developed and designed as a relatively straightforward reservoir routing model, that simulates flow through a reservoir with a level-
release table defined. Specifically, the model is able to precisely replicate the uncontrolled outlet reservoir behaviour of the legacy Deltares RTC-Tools 1
codebase, which is no longer developed and supported. Because the adapter model is based on Java, it can run on Windows/Linux systems.

The model is introduced in the 2021.01 BoM Delft-FEWS version. The model adapter will be part of the Delft-FEWS code base of Delft-FEWS versions
2023.01 and onwards with in-memory options, to be set in the General Adapter configuration.

Directory structure

The data directories and configuration files that are required for operating the FEWS Reservoir Model Adapter are shown below.

FEWS_SA
+---Config
+---Col dSt ateFi | es
| | nanoi _keepit _KeepReservoir_Historical _|RMDefault.zip........ coldState file
+---1dMapFil es
| | dExport | RMReser voi r. xm
| Idinmport IRVReSEervoir. Xmo cust om mappi ngs for the |RM

|

|

|

|

|

vari abl es and | ocations

(I

| +- - - Mbdul eConfi gFi |l es

| | | Reservoir_lh_Forecast _IRMXxm mai n configuration file of the
adapt er

[

| +- - - Mbdul eDat aSet Fi | es

| | | RESErVOI I _EXE. Zi Puvv zipped IRMbin files, transported
to Modul es\reservoir directory

(I

| | | nanmoi _| RM Reservoir_Forecast. zip........ ... zi pped IRM nodel files for a
specific reservoir, transported to Mddul es\Reservoir directory

|

+- - - Mbdul es

| +---del ft-adapt ers. ..o directory which contains all IRM
adapter java files

[

| +---reservoir

| | +- - - Keep_I RM

| | | di @ag. XM oo out put FEWS- Pl di agnostics file,
i nported by Del ft-FEWS

| | | EXPOrt . XM o out put FEWS-PI tine series files,
inported by Del ft-FEWS

| | | exportState. Xm FEWS- Pl state output tine series
file, inported by Del ft-FEWS

| | | FTPOrt. XM L input FEWS-PI tine series files,
exported by Del ft-FEWS

| | | importState. Xm FEWS- Pl state input tine series
file, exported by Del ft-FEWS

| | | Keep_I ntegratedReservoirMdel .xm I RM nodel file

| | | run_info. Xm . a file generated by FEWS

contai ning paths, run options

| | | statePl . XM ... Pl State file (definition)

|

General Adapter configuration

The General Adapter defines forms the interface between the Delft-FEWS system and the Reservoir model.

The data is provided in a standardized XML interface format, the FEWS Published Interface. For more details about general structure of the General
Adapter please check 05 General Adapter Module.

https://publicwiki.deltares.nl/display/FEWSDOC/05+General+Adapter+Module

4| generalAdapterRun

= xmins hitp:/fwrw v widelft nifews
= xminssi hittp://vrve . 3.0rg/2001/XMLSchema-instance
= xsizschemalocation hitp:/fvrw vi.widelftnifews hitp:ifews. widefft jon1 d
«f general
{} description Reservoir Model
{} piversion 18
{} rootDir %REGION_HOME%/Modules/reservoirSRESERVOIRS.
{) workDir %ROOT_DIR%
{) exportDir %6RO0T_DIR%
{} exportbatasetDir 9%REGION_HOME%/Modules/reservoir
{} updateExportDataSetDirOniyOnChange true
{} exportidMap IdExpertReservoir
{} importDir %ROOT_DR%
{} importidMap IdimportReservoir
{} dumpFileDir “%REGION_HOMES%/DumpFiles
{3 dumpDir %ROOT_DR%
. {) diagnosticFile %6RO0T_DIR%/diag.xml
« activities

startUpActivities
j = purgeActivity
+/ exportActivities

+/ exportStateActivity

{} modulelnstanceld SCATCHMENTS_SSUBCATCHMENTS_SRESERVOIRSReservoir_Historical
{} stateExportDir %RO0T_DIR%
{} stateConfigFile %RO0T_DIR%/stateP|.xml

¥ stateLocations type=fi=
|| = stateselection
| exportTime SeriesActivity (2

{} description {} exportFile {} timeSeriesSets
4 [Export data (inflows and outflows) _import xml ~ time SeriesSets
12 [Export state data (levels and volumes) importState xml | | time SeriesSets
exportDataSetActivity
j {} modulelnstanceld SCATCHMENTS_Reservoir_Forecast
4 exportRunfFileActivity
{} exportrile run_info.xml
properties
LI L] j = string k

+/ executeActivities
/ executeActivity

{} description Run Reservoir module
command
J {3 nldetares. fews.
{} binDir SREGION_HOMES/Modules/delfi-adapters
arguments
{} argument %ROOT_DIR%/run_info.xml
{} timeOut 100000
| | {} ignoreDiagnostics true

4/ importActivities
4/ importTime SeriesActivity

{} description Import IRM reservoir management resutts
{} importfile export.xml

j timeSeriesSets

i timeSeriesSet (4

general

Configuring a pi-version 1.8 is required for the diagnostics of the model. The model will write diagnostics to the filename that is configured in the General
Adapter (the model reads it from the outputDiagnosticFile field in the run_info file). The logging will be to the level that is configured in Delft-FEWS
(typically debug/info/warn/error).

idMapping

The location/parameters used in Delft-FEWS can be transformed to model variableld locations/parameters by ID-mapping. The configuration files for ID-
mapping can be of a general form, as long as the reservoir model have been set up with identical variables for the inputs/outputs. The model will look for
the required variables (as configured in the IRM model file) in the parameter field of the PI timeseries.

® Example idExport file
® Example idimport file

IdMapping is dependent on how the variables have been defined in the model. The Reservoir Model code will try to parse the configured model variables
(like 1In, QOut, etc) from the parameterld of the PI timeseries, the locationld is not used. This means that the parameterld's of all the input timeseries need

to be unique (and identical to the model variables). When writing the output timeseries, the locationld used in the import Pl xml files will be used as the
locationld in the output PI xml files.

exportStateActivity

The Reservoir model can work with a stateConfigFile, exported from Delft-FEWS. This file should follow the conventions and list the read/write locations.
When defined, the model will write an output state timeseries file for the complete run period, for all model export variables.
exportTimeSeriesActivity

The reservoir model requires at a minimum the following timeseries:
® level or storage state value (at model start time)

® inflow timeseries (complete run period)
® release timeseries (optional)

exportRunFileActivity

A run_info file is required input for the Reservoir model, so an exportRunFileActivity needs to be configured in the General Adapter. The Reservoir Model
expects a model property in the run_info file, that specifies the name of the actual Reservoir model to be run.

https://publicwiki.deltares.nl/download/attachments/260538944/IdExportReservoir.xml?version=1&modificationDate=1685699370420&api=v2
https://publicwiki.deltares.nl/download/attachments/260538944/IdImportReservoir.xml?version=1&modificationDate=1685699370618&api=v2

<exportFil e>run_i nfo.xm </ exportFil e>
<properties>
<string key="nodel " val ue="$RESERVO R$_I nt egr at edReser voi r Model . xm "/ >
</ properties>
</ export RunFi |l eActi vity>

A typical run_info.xml file will contain the following information:

4 Run
= xmins:xsi hitp:ifeweew. w3, orgf2001/XMLSchema-instance
= xmins hitp:ifee e widelft.nl few s/Pl
= xsi:schemalocation hitp:ihvewew widelft nlfews/Pl hitp:ifews. widelft.nl'schemas/version1 .0/pi-schemas/pi_run.xsd
= version 1.8
{} logLevel debug
{} timeZone 0.0

= startDateTime d

= endDateTime da

> time0 date=2021-11-23

> lastObservationDateTime da 21-12-07 time 0

{} workDir DAFEWS_Systems\FEWS_HyFS\HyFS_SA_swn\Modules\reservoiriKeep

{} inputStateDescriptionFile D:\FEWS_Systems\FEWS_HyFS\HyFS_SA_svn\Modules'reservoiriKeep'stateP| xml
inputTime SeriesFile (2

Abe Text
1 DAFEWS_Systems\FEWS_HyFS\HYFS_SA_svn\Modules\reservoiriKeeptimpaort.xml
2 DAFEWS_Systems\FEWS_HyFS\HYFS_SA_svn\Modules\reservoiriKeeptimportState =ml
{} outputDiagnosticFile DAFEWS_Systems\FEWS_HyFS\HyFS_SA_svn\Modules\reservoinkKeep\diag.xml
{} outputTimeSeriesFile DAFEWS_Sy=tems\FEWS_HyFS\HYFS_SA_svni\Modules\reservoiriKeepiexpart.xml
:' properties

¥ string key=mode

executeActivity

The executeActivity runs the model. The model runs of the Delft-FEWS JRE, so the ReservoirModelAdapter binaries can be specified within the binDir
element. The Reservoir Model class itself is called nl.deltares.fews.reservoirmodel.ReservoirModelAdapter. It is required to provide the path of the run_info
file as an argument to the model.

<execut eActivity>
<descri pti on>Run Reservoir nodul e</description>
<command>
<cl assNane>nl . del t ares. f ews. reservoi r nodel . Reser voi r Model Adapt er </ cl assNanme>
<bi nDi r >$REG ON_HOMES$/ Mbdul es/ del ft - adapt er s/ f ews- r eser voi r nodel - adapt er - bi n</ bi nDi r >
</ conmand>
<ar gunment s>
<ar gunment >%R0O0T_DI RY% r un_i nf 0. xml </ ar gunent >
</ ar gunent s>
<t i meQut >100000</ ti neQut >
<i gnor eDi agnosti cs>true</ignoreDi agnosti cs>
</ execut eActi vity>

importActivity

The model results (typically consisting of level, storage, inflow and release timeseries) can be imported using the importActivities. The importFile name
configured will be written to the run_info file and consequently be created by the Reservoir model. Note that specific idimport configuration is required.

Model

The model definition for the reservoir can be configured in a model file that follows the Integrated Reservoir Model schema. The model options are
described below.

Schema

https://publicwiki.deltares.nl/download/attachments/260538944/run_info.xml?version=1&modificationDate=1685699306368&api=v2
https://fewsdocs.deltares.nl/schemas/version1.0/adapter-schemas/IntegratedReservoirModel.xsd

" _____________________________ -
‘ fews:IntegratedReservoirModelComplexType |
| |
\ Feg;uﬁg;mﬂs;m?uﬁ;y; ___________ _i I
\
\ I
\
\ I
\
\ |
| = |
[eorateanescrvamioas B+~ } i—lews‘GeneraIMuduleCwnf\gCummexTVDe | I |
| | ¥ [
‘ ‘ Optional deseription of | | |
| | the schematization and | |
| | | its version | |
| | | i
\ | Pool routing scheme for the |
‘ ‘ I network components | | |
| E@Aﬁewswmmnmﬂwmm | | |
‘ ‘ Allow the model to do dynamic I |
‘ | interpolation of data between |
| | the records in the [
| (preprocessed) input storage | | |
| | | and outfiow tables |
| | | !
\ ‘ | Interpolation method for elevation tables I | :
\ | = ;
| ik
‘ | Resolution for elevati
| ‘ {2l nput Pteroclaten () I
\ | to be performed before the | |
| | model runs, Mot used nhen |
| | dynamiclnterpolation is set |l |
o i
| | Lo a1
‘ ‘ I
‘ | Storage characteristics of the node: | |
| The storage 5 as a function of the |
‘ water level h can be provided 2s a |
‘ ‘ tabe or formuia. I
| \ I
| Uncantralled autiet, the | |
| release is a function of the
‘ | water level hin the reservor | |
\ ! |
\ | I :
L_______::::::::::::::::::::::J

For reference, an example IntegratedReservoirModel file is attached.

https://publicwiki.deltares.nl/download/attachments/260538944/Keep_IntegratedReservoirModel.xml?version=2&modificationDate=1709296422805&api=v2

<l nt egrat edReser voi r Model xm ns="http://ww.w del ft.nl/fews" xml ns:xsi="http://ww:.w3. org/ 2001/ XM_Schena-
instance" xsi:schemaLocation="http://ww. W delft.nl/fews https://fewsdocs. deltares.nl/schenmas/versionl.0
[adapt er - schenas/ | nt egr at edReser voi r Model . xsd" >
<general >
<m ssi ngVal ue>- 999</ nm ssi ngVal ue>
</ general >
<reservoir id="H555001">
<general >
<descri ption>reservoir managenent H555001</descri ption>
<pool Rout i ngSchene>| evel Pool Met hod</ pool Rout i ngSchene>
<dynami cl nt er pol ati on>t rue</ dynani cl nt er pol ati on>
<i nter pol ati onMet hod>l i near </ i nt er pol ati onMet hod>
<el evati onl nt erval >0. 0005</ el evati onl nt erval >
<ext rapol ati onMet hod>l i near </ ext r apol ati onMet hod>
</ general >
<l--Height (LGH vs. Storage (nB)-->
<storageCharacteristics>
<st or ageTabl e>
<el evati onSt orageRecord el evati on="292.9" storage="0"/>
<el evati onSt orageRecord el evati on="293. 0" storage="500"/>

<el evati onSt orageRecord el evation="335.4" storage="720992000"/ >
<el evati onSt or ageRecord el evati on="335. 6" storage="732795000"/ >
</ st or ageTabl e>
</ storageCharacteristics>
<!--Height (LGH) vs Spill (nB/s-->
<uncontrol |l edCQutlet id="outlet">
<capaci tyCharacteristics>
<out | et Tabl e>
<el evationQutl et Record el evation="292.9" outlet="0"/>
<el evationQut| et Record el evati on="293.0" outlet="0"/>

<el evationQutl et Record el evation="335.4" outlet="9768"/>
<el evati onQut| et Record el evati on="335. 6" outl et="10278"/>
</ out | et Tabl e>
</ capaci tyCharacteristics>
</uncontrol |l edQutl et >
<i nput >
<i nfl ow>l | n</i nfl ow>
<l evel >HI n</| evel >
<rel ease>QQut </ rel ease>
</i nput >
<out put >
<i nfl ow>l Qut </ i nf | ow>
<rel ease>QQut </ r el ease>
<st or age>SQut </ st or age>
<l evel >HQut </ | evel >
<error>EQut</error>
</ out put >
</reservoir>
</ I nt egr at edReser voi r Model >

In XML Grid View this looks the following

4 IntegratedReservoirModel
= xmins http-ifweerw. widelft.nlifews
= xmins:xsi httpoifererw. w3 org 2001 XMLS chema-instance
= xsirgchemalocation hitp./fwww widelft.nlifews hitps:/ifewsdocs. deltares. nl'schemas/version1.0Wadapter-schemas/integ
4 general
_ {} missingValue -399
4 reservoir
= id H555001
- general
{} description reservoir management H555001
{} poolRoutingScheme |levelPoolMethod
{} dynamiclnterpolation|true
{} interpolationMethod |linear
{} elevationinterval 0.0005
_ {} extrapolationMethod lingar
- Comment Height (LGH} v=. Storage (m3)
- storageCharacteristics
| > storageTable
{- Comment Height (LGH) v= Spill (m3/=
a yncontrolledOutlet
= id outlet
| » capacityCharacteristics
4 input
£} inflow lin
{3} level Hin
_ {} release Qout
A gutput
{3} inflow I0ut
{} release Q0ut
{} storage SOut
{3} level HOut
|4 _ {} error EQut
general

In the general section of the reservoir model, a missingValue element needs to be configured. It is important to match the missingValue as defined in the
Delft-FEWS General Adapter configuration for the model run.

reservoir
The reservoir element contains the following sections:

general
uncontrolledOutlet
input

output

general
The general section of the reservoir element contains the follwing fields:

poolRoutingScheme
dynamicinterpolation
interpolationMethod
elevationlinterval
extrapolationMethod (from 2023.02)
storageCharacteristics

poolRoutingScheme

for the poolRoutingScheme element, one can choose the following options:

® |evelPoolMethod
® backwardsEulerMethod

levelPoolMethod
The Level Pool method is a well known method for reservoir routing. Level Pool routing is a procedure for calculating the outflow hydrograph form a
reservoir with a horizontal water surface, given its inflow hydrograph and storage-release characteristics. The level pool routing method is sometimes also
referred to as Storage routing, the Storage-Indication method, or the Modified Puls method. For this reservoir model, the method described in Applied
Hydrology from V.T.Chow (1988) is used.
The reservoir routing procedure in the Level Pool method is as follows:
We define the value G is a function of Storage and Outflow, defined as G[S] = 2*S/t + O
where:

® S represents the reservoir storage

® O represents the reservoir release

® trepresents the time step

For each row in the the uncontrolledOutlet capacityCharacteristics outletTable, we can now precompute a G[S] value. This allows the model to look up the
release O for a given G.

Dt = 3600 sec G(S) function
Release (0) Storage (S) 25/dt+ 0
{m3/s) (m3) {m3/s)
0 '] 0.00000
0 500 0.27778
0 10000 5.55556
0 20000 11.11111
0 30000 16.66667
0 40000 22232332
0 50000 2777778
0 59000 3277778
0 69000 38.33333
0 23000 46.11111
0 104000 57.77778
0 128000 71.11111
0 153000 85.00000

The level pool method makes use of the following relations, that follow from the water balance equations (details in the handbook):
K[t] = G[t-1] - 2*O[t-1]

G[t]= (I[t-1] + I[t])+K[t]

For the computation, we loop over all time intervals from t=0 to t=t ;.

1. Ift=0
a. Use the state values as provided in the input files. If either a level, or a storage are provided, look up the equivalent value.
b. In case both level and storage are provided, use the lookup value to determine any inconsistencies. If found, the level is used as the
basis and the storage at t=0 is recalculated
¢. no computation takes place at t=0
2. Ift=1 then
a. K[1] = 2*S[0]/t - O[0] (inital storage and release values are known)
b. G[1] is computed with G[1]= (I[0] + I[1])+K[1]
¢. Compute outlet O[1] by linearly interpolating the precomputed table using O(S) and G(S).
d. In case an outlet O_input[1] timeseries is provided as part of the inputs, set O[1] = O_input[1]
e. Compute storage S[1] = S[0] + t* (I[1] - O[1])
3. Ift>1 then
. K[t] = G[t-1] - 2*O[t-1]
. G[t] is computed with G[t]= (I[t-1] + I[t])+K[t]
. Compute outlet O[t] by linearly interpolating the precomputed table using O(S) and G(S).
. In case an outlet O_input[t] timeseries is provided as part of the inputs, set O[t] = O_input][t]
. Compute storage S[t] = S[t-1] + t* (I[t] - O[t])

DPQAOTH

A model that is configured to use the level-pool method will write the values for G and K for each timestep in the the diagnostics when run in debug mode.

backwardEulerMethod

The Backward Euler reservoir routing scheme is an implicit scheme that uses the backward difference approximation for the derivative. The equation for
the backward Euler reservoir routing scheme can be written as follows:

https://ponce.sdsu.edu/Applied_Hydrology_Chow_1988.pdf
https://ponce.sdsu.edu/Applied_Hydrology_Chow_1988.pdf

S[t+1] = S[t] + t* (I[t+1] - O[t+1,S[t]])
where:

S[t+1] represents the reservoir storage at the next time step (n+1)

S[t] represents the reservoir storage at the current time step (n).

t represents the time step.

I[t+1] is the inflow into the reservoir at the next time step (n+1).

O[t+1, S[t]] is the reservoir release at the next time step (n+1), based on the storage-release relation using SJ[t] for the lookup input.

dynamiclnterpolation

When the dynamicinterpolation element is set to true, the level/storage and level/outlet tables are inteprolated dynamically (every timestep), to the precise
value, using the elevationinterpolationMethod. In this case, the elevationinterval element is ignored.

When the dynamiclinterpolation element is set to false, the level/storage and level/outlet tables are precalculated (only once) using the elevationinterpolatio
nMethod, to the specified elevationinterval.

interpolationMethod

Linear interpolation is the only available interpolation method

elevationInterval

The elevationinterval is the elevation resolution at which the configured level/storage and level/outlet tables need to be recalculated to achieve a higher
granularity. Note that the level output at each timestep is processed to that specific elevationinterval. When the model looks up a value from the table, the
largest precalculated table elements smaller than the lookup value will be used (i.e. the model always rounds down). The consequence is that reservoir
inflows/releases at a timestep that result in level/storage changes smaller than the interval/resolution will not be taken into account. The model does not
perform any shadow accounting to keep track of these volumes. This means that the model will generally underestimate the flow when dynamicinterpolatio
n element is set to false, and water balance will not be closed for that run type. For larger reservoirs (more volume per unit water disk) the elevationinterval
needs to be set to higher resolutions to account for this.

extrapolationMethod

The available extrapolation options are: notAllowed. linear, maxMin

storageCharacteristics

The storageCharacteristic storageTable contains a storage-level lookup table that is strictly increasing. Note that this table should have the identical
storage inputs as the capacityCharacteristics outletTable from the uncontrolledOutlet.

uncontrolledOutlet

The uncontrolledOutlet element contains capacityCharacteristics outletTable which relates storage-release. Note that this table should have the identical
storage inputs as the storageCharacteristic storageTable.

input / output variables and files
In the input section, the model input variables will be configured.
The <input><inflow> element is required

The <input><level> element is optional, and can be set to the timeseries variable that can overwrite (take precedence) over the level as a result from the
release table computation. For a given timestep, if the level input timeseries (e.g. HIn) contains a value, this level is applied. The model will determine the
resulting release from closing the waterbalance (thus not using the release lookup value)

The <input><release> element is optional, and can similarly be set to the timeseries variable that can overwrite (take precedence) over the lookup value
for the outlet. This means that for a given timestep, if the outlet input timeseries (e.g. QIn) contains a value, this release is applied. This input option was
added in 2023.02

When both a level and a release input value are available for a timestep, the model will use those values and write them to the output. A waterbalance
error term will be calculated and saved for that timestep as well.

The model will look for the required variables in the parameter field of the PI timeseries (see idMapping). The Reservoir Model code will try to parse the
configured model variables (like 1In, QOut, etc) from the parameterld of the PI timeseries, the locationld is not used. In the output section, the model output
variables will be configured. When writing the output timeseries, the locationld used in the import PI xml files will be used as the locationld in the output PI
xml files. The output model variableld's will be used as the parameter in the timeseries.

The naming convention of the input and output timeseries filenames are free, the model will determine which files to read for the input based on the inputTi
meSeriesFile filed in the run_info file. The following two input timeseries files are suggested:

® importState.xml
o level values, or (HIn)
O storage values (Sin)

® import.xml
© inflow (lIn)
o outlet (optional) (QIn)

The following output timeseries file is suggested:

® export.xml
© inflow (I0ut)
o release (QOut)
O storage (SOut)
o level (HOut)
© error (EOut)

Note that for the suggested variableld's in the provided example, the postfix In and Out are used to denote if the series are Inputs for, or Outputs from the
model.

State values

The startDateTime and endDateTime in the run_info file are used by the model to determine the start (startDateTime) and end (endDateTime) of the model
run. The model will pick the starting (state) value for level/storage (level has precedent in case of an inconsistency), inflow, outlet from the
inputTimeSeriesFiles at the specific datetime. It will use the output variables to look for the state timeseries. The model will first check for a state level
value. If a starting level value is missing in the input, the model will use the starting storage value. If both starting level/storage cannot be determined from
the input files, the model will use the first level element as defined in the storage table as the starting level. A Warning message will be generated to notify
the operator of this situation.

Inflow and outlet values at the starting time are not required at the first timestep and these values will not be used for storage calculations (no calculation at
the first timestep). When these values are not provided as inputs, a value of 0 is assumed (and written to the output).

When no inflows into the reservoir are defined at all, the model will not calculate, but also it will not error out. It will produce and export.xml with missings
(except for the initial values). When some intermediate inflow values are missing, the model will stop calculating at the point. It will not error out (and not
throw a warning), it will produces an export.xml with calculated values up until the point an inflow value was missing and it will have missings for all outputs
from that moment in time.

In case state functionality is configured in the run_info file (inputStateDescriptionFile is defined), the model will also write (all) the outputs to the write
location as defined in the stateLocation file (e.g. exportState.xml)

statelLoc

= type file
{} readLocation |DFEWS_Systems\FEWS_HyFS\HyFS_S54_svnModulesireservoiriKeep_[RMimportState xml

£} writeLocation D:\FEWS_Systems\FEWS_HyFS\HyFS_SA_svniModules\reservoiriKeep_IRM\exportState xmi

Reservoir Model specifics

® The Integrated Reservoir Model can be considered "timestep ending”, similar the the timestep definition of Delft-FEWS.
® No calculations/processing is performed at the first timestep (=0, startDateTime as set in the run_info.xml file)

Ensembles

The Reservoir Model can be run in parallel from Delft-FEWS. The runinLoop element of the workflow should be set to false. The general section of the
General Adapter configuration should contain the % TEMP_DIR% property as the model rootDir. And lastly, to enable the parallel running of ensemble
members the runinLoopParallelProcessorCount entry must be set in the global properties file. Here you either specify the number of cores to use or
specify 100 to use all available cores.

The workflow definition for a parallel model run:

<activity>
<runl ndependent >t r ue</ r unl ndependent >
<wor kf | om d>Reser voi r _For ecast </ wor kf | ow d>
<ensenbl e>
<ensenbl el d>ENSEMBLE</ ensenbl el d>
<runl nLoop>f al se</runl nLoop>
</ ensenbl e>
</activity>

The general section of the General Adapter configuration:

<gener al >
<r oot Di r >%EMP_DI R%/ r oot Di r >
<wor kDi r >%R00T_DI R% wor k</ wor kDi r >

</ general >

Entry in the global properties:

Config Example # to use 4 cores/cpu's:

runl nLoopPar al | el Processor Count =4

See the following page for more details.

In-Memory execution

From Delft-FEWS version 2023.01 onwards, it will be porssible to run the Reservoir Model adapter "in-memory" from Delft-FEWS, using the inMemoryFileT
ransfer element of the general section set to True. In that case, all exported and imported files are transferred in memory between Delft-FEWS and the
executed Reservoir Model.

https://publicwiki.deltares.nl/display/FEWSDOC/19+Parallel+running+of+ensemble+loops+and+activities+on+one+forecasting+shell+instance

	Integrated Reservoir Model

