
Integrated Reservoir Model

Introduction
Directory structure
General Adapter configuration

general
idMapping
exportStateActivity
exportTimeSeriesActivity
exportRunFileActivity
executeActivity
importActivity

Model
Schema

general
reservoir

general
poolRoutingScheme
levelPoolMethod
backwardEulerMethod
dynamicInterpolation
interpolationMethod
elevationInterval
extrapolationMethod

storageCharacteristics
uncontrolledOutlet
input / output variables and files
State values

Reservoir Model specifics
Ensembles
In-Memory execution

Introduction
The Integrated Reservoir Model is a General Adapter module written in Java, developed by Deltares. The model class is part of the Delft-FEWS code base.

The Reservoir model is developed and designed as a relatively straightforward reservoir routing model, that simulates flow through a reservoir with a level-
release table defined. Specifically, the model is able to precisely replicate the uncontrolled outlet reservoir behaviour of the legacy Deltares RTC-Tools 1
codebase, which is no longer developed and supported. Because the adapter model is based on Java, it can run on Windows/Linux systems.

 The model is introduced in the 2021.01 BoM Delft-FEWS version. The model adapter will be part of the Delft-FEWS code base of Delft-FEWS versions
2023.01 and onwards with in-memory options, to be set in the General Adapter configuration.

Directory structure
The data directories and configuration files that are required for operating the FEWS Reservoir Model Adapter are shown below.

FEWS_SA
+---Config
| +---ColdStateFiles
| | | namoi_keepit_KeepReservoir_Historical_IRM Default.zip........coldState file
| +---IdMapFiles
| | IdExportIRMReservoir.xml
| | IdImportIRMReservoir.xml...custom mappings for the IRM
variables and locations
| |
| +---ModuleConfigFiles
| | | Reservoir_1h_Forecast_IRM.xml....................................main configuration file of the
adapter
| |
| +---ModuleDataSetFiles
| | | Reservoir_Exe.zip..zipped IRM bin files, transported
to Modules\reservoir directory
| | |
| | | namoi_IRM_Reservoir_Forecast.zip.................................zipped IRM model files for a
specific reservoir, transported to Modules\Reservoir directory
|
+---Modules
| +---delft-adapters..directory which contains all IRM
adapter java files
| | |
| +---reservoir
| | +---Keep_IRM
| | | diag.xml..output FEWS-PI diagnostics file,
imported by Delft-FEWS
| | | export.xml..output FEWS-PI time series files,
imported by Delft-FEWS
| | | exportState.xml...FEWS-PI state output time series
file, imported by Delft-FEWS
| | | import.xml..input FEWS-PI time series files,
exported by Delft-FEWS
| | | importState.xml...FEWS-PI state input time series
file, exported by Delft-FEWS
| | | Keep_IntegratedReservoirModel.xml.............................IRM model file
| | | run_info.xml..a file generated by FEWS
containing paths, run options
| | | statePI.xml...PI State file (definition)
| | |

General Adapter configuration
The General Adapter defines forms the interface between the Delft-FEWS system and the Reservoir model.

The data is provided in a standardized XML interface format, the FEWS Published Interface. For more details about general structure of the General
Adapter please check .05 General Adapter Module

https://publicwiki.deltares.nl/display/FEWSDOC/05+General+Adapter+Module

general

Configuring a pi-version 1.8 is required for the diagnostics of the model. The model will write diagnostics to the filename that is configured in the General
Adapter (the model reads it from the field in the file). The logging will be to the level that is configured in Delft-FEWS outputDiagnosticFile run_info
(typically).debug/info/warn/error

idMapping

The location/parameters used in Delft-FEWS can be transformed to model variableId locations/parameters by ID-mapping. The configuration files for ID-
mapping can be of a general form, as long as the reservoir model have been set up with identical variables for the inputs/outputs. The model will look for
the required variables (as configured in the IRM model file) in the field of the PI timeseries. parameter

Example idExport file
Example idImport file

IdMapping is dependent on how the variables have been defined in the model. The Reservoir Model code will try to parse the configured model variables
(like IIn, QOut, etc) from the of the PI timeseries, the locationId is not used. This means that the parameterId's of all the input timeseries need parameterId
to be unique (and identical to the model variables). When writing the output timeseries, the locationId used in the import PI xml files will be used as the
locationId in the output PI xml files.

exportStateActivity

The Reservoir model can work with a stateConfigFile, exported from Delft-FEWS. This file should follow the conventions and list the read/write locations.
When defined, the model will write an output state timeseries file for the complete run period, for all model export variables.

exportTimeSeriesActivity

The reservoir model requires at a minimum the following timeseries:

level or storage state value (at model start time)
inflow timeseries (complete run period)
release timeseries (optional)

exportRunFileActivity

A run_info file is required input for the Reservoir model, so an exportRunFileActivity needs to be configured in the General Adapter. The Reservoir Model
expects a property in the run_info file, that specifies the name of the actual Reservoir model to be run.model

https://publicwiki.deltares.nl/download/attachments/260538944/IdExportReservoir.xml?version=1&modificationDate=1685699370420&api=v2
https://publicwiki.deltares.nl/download/attachments/260538944/IdImportReservoir.xml?version=1&modificationDate=1685699370618&api=v2

 <exportFile>run_info.xml</exportFile>
 <properties>
 <string key="model" value="$RESERVOIR$_IntegratedReservoirModel.xml"/>
 </properties>
 </exportRunFileActivity>

A typical file will contain the following information:run_info.xml

executeActivity

The executeActivity runs the model. The model runs of the Delft-FEWS JRE, so the ReservoirModelAdapter binaries can be specified within the binDir
element. The Reservoir Model class itself is called It is required to provide the path of the run_info nl.deltares.fews.reservoirmodel.ReservoirModelAdapter.
file as an argument to the model.

 <executeActivity>
 <description>Run Reservoir module</description>
 <command>
 <className>nl.deltares.fews.reservoirmodel.ReservoirModelAdapter</className>
 <binDir>$REGION_HOME$/Modules/delft-adapters/fews-reservoirmodel-adapter-bin</binDir>
 </command>
 <arguments>
 <argument>%ROOT_DIR%/run_info.xml</argument>
 </arguments>
 <timeOut>100000</timeOut>
 <ignoreDiagnostics>true</ignoreDiagnostics>
 </executeActivity>

importActivity

The model results (typically consisting of level, storage, inflow and release timeseries) can be imported using the importActivities. The importFile name
configured will be written to the run_info file and consequently be created by the Reservoir model. Note that specific idImport configuration is required.

Model
The model definition for the reservoir can be configured in a model file that follows the . The model options are Integrated Reservoir Model schema
described below.

Schema

https://publicwiki.deltares.nl/download/attachments/260538944/run_info.xml?version=1&modificationDate=1685699306368&api=v2
https://fewsdocs.deltares.nl/schemas/version1.0/adapter-schemas/IntegratedReservoirModel.xsd

For reference, an example is attached.IntegratedReservoirModel file

https://publicwiki.deltares.nl/download/attachments/260538944/Keep_IntegratedReservoirModel.xml?version=2&modificationDate=1709296422805&api=v2

<IntegratedReservoirModel xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.wldelft.nl/fews https://fewsdocs.deltares.nl/schemas/version1.0
/adapter-schemas/IntegratedReservoirModel.xsd">
 <general>
 <missingValue>-999</missingValue>
 </general>
 <reservoir id="H555001">
 <general>
 <description>reservoir management H555001</description>
 <poolRoutingScheme>levelPoolMethod</poolRoutingScheme>
 <dynamicInterpolation>true</dynamicInterpolation>
 <interpolationMethod>linear</interpolationMethod>
 <elevationInterval>0.0005</elevationInterval>
 <extrapolationMethod>linear</extrapolationMethod>
 </general>
 <!--Height (LGH) vs. Storage (m3)-->
 <storageCharacteristics>
 <storageTable>
 <elevationStorageRecord elevation="292.9" storage="0"/>
 <elevationStorageRecord elevation="293.0" storage="500"/>
 ...
 <elevationStorageRecord elevation="335.4" storage="720992000"/>
 <elevationStorageRecord elevation="335.6" storage="732795000"/>
 </storageTable>
 </storageCharacteristics>
 <!--Height (LGH) vs Spill (m3/s-->
 <uncontrolledOutlet id="outlet">
 <capacityCharacteristics>
 <outletTable>
 <elevationOutletRecord elevation="292.9" outlet="0"/>
 <elevationOutletRecord elevation="293.0" outlet="0"/>
 ...
 <elevationOutletRecord elevation="335.4" outlet="9768"/>
 <elevationOutletRecord elevation="335.6" outlet="10278"/>
 </outletTable>
 </capacityCharacteristics>
 </uncontrolledOutlet>
 <input>
 <inflow>IIn</inflow>
 <level>HIn</level>
 <release>QOut</release>
 </input>
 <output>
 <inflow>IOut</inflow>
 <release>QOut</release>
 <storage>SOut</storage>
 <level>HOut</level>
 <error>EOut</error>
 </output>
 </reservoir>
</IntegratedReservoirModel>

In XML Grid View this looks the following

general

In the general section of the reservoir model, a element needs to be configured. It is important to match the missingValue as defined in the missingValue
Delft-FEWS General Adapter configuration for the model run.

reservoir

The reservoir element contains the following sections:

general
uncontrolledOutlet
input
output

general

The general section of the reservoir element contains the follwing fields:

poolRoutingScheme
dynamicInterpolation
interpolationMethod
elevationInterval
extrapolationMethod (from 2023.02)
storageCharacteristics

poolRoutingScheme

for the element, one can choose the following options:poolRoutingScheme

1.
a.
b.

c.
2.

a.
b.
c.
d.
e.

3.
a.
b.
c.
d.
e.

levelPoolMethod
backwardsEulerMethod

levelPoolMethod

The Level Pool method is a well known method for reservoir routing. Level Pool routing is a procedure for calculating the outflow hydrograph form a
reservoir with a horizontal water surface, given its inflow hydrograph and storage-release characteristics. The level pool routing method is sometimes also
referred to as Storage routing, the Storage-Indication method, or the Modified Puls method. For this reservoir model, the method described in Applied

 is used. Hydrology from V.T.Chow (1988)

The reservoir routing procedure in the Level Pool method is as follows:

We define the value is a function of Storage and Outflow, defined as G G[S] = 2*S/t + O

where:

S represents the reservoir storage
O represents the reservoir release
t represents the time step

For each row in the the uncontrolledOutlet capacityCharacteristics outletTable, we can now precompute a value. This allows the model to look up the G[S]
release for a given G.O

The level pool method makes use of the following relations, that follow from the water balance equations (details in the handbook):

 = G[t-1] - 2*O[t-1]K[t]

= (I[t-1] + I[t])+K[t]G[t]

 For the computation, we loop over all time intervals from t=0 to t=tend.

If t=0
Use the state values as provided in the input files. If either a level, or a storage are provided, look up the equivalent value.
In case both level and storage are provided, use the lookup value to determine any inconsistencies. If found, the level is used as the
basis and the storage at t=0 is recalculated
no computation takes place at t=0

If t=1 then
 (inital storage and release values are known) = 2*S[0]/t - O[0]K[1]

 is computed with G[1] = (I[0] + I[1])+G[1] K[1]
Compute outlet by linearly interpolating the precomputed table using and .O[1] O(S) G(S)
In case an outlet timeseries is provided as part of the inputs, set O_input[1] O[1] = O_input[1]
Compute storage S[1] = S[0] + t* (I[1] - O[1])

If t>1 then
 = - 2*O[t-1]K[t] G[t-1]
 is computed with G[t] = (I[t-1] + I[t])+G[t] K[t]

Compute outlet by linearly interpolating the precomputed table using and .O[t] O(S) G(S)
In case an outlet timeseries is provided as part of the inputs, set O_input[t] O[t] = O_input[t]
Compute storage S[t] = S[t-1] + t* (I[t] - O[t])

A model that is configured to use the level-pool method will write the values for and for each timestep in the the diagnostics when run in debug mode.G K

backwardEulerMethod

The Backward Euler reservoir routing scheme is an implicit scheme that uses the backward difference approximation for the derivative. The equation for
the backward Euler reservoir routing scheme can be written as follows:

https://ponce.sdsu.edu/Applied_Hydrology_Chow_1988.pdf
https://ponce.sdsu.edu/Applied_Hydrology_Chow_1988.pdf

S[t+1] = S[t] + t* (I[t+1] - O[t+1,S[t]])

where:

S[t+1] represents the reservoir storage at the next time step (n+1)
S[t] represents the reservoir storage at the current time step (n).
t represents the time step.
I[t+1] is the inflow into the reservoir at the next time step (n+1).
O[t+1, S[t]] is the reservoir release at the next time step (n+1), based on the storage-release relation using for the lookup input.S[t]

dynamicInterpolation

When the element is set to , the level/storage and level/outlet tables are inteprolated dynamically (every timestep), to the precise dynamicInterpolation true
value, using the . In this case, the element is ignored. elevationInterpolationMethod elevationInterval

When the element is set to , the level/storage and level/outlet tables are precalculated (only once) using the dynamicInterpolation false elevationInterpolatio
to the specified nMethod, elevationInterval.

interpolationMethod

Linear interpolation is the only available interpolation method

elevationInterval

The is the elevation resolution at which the configured level/storage and level/outlet tables need to be recalculated to achieve a higher elevationInterval
granularity. Note that the level output at each timestep is processed to that specific elevationInterval. When the model looks up a value from the table, the
largest precalculated table elements smaller than the lookup value will be used (i.e. the model always rounds down). The consequence is that reservoir
inflows/releases at a timestep that result in will be taken into account. The model does not level/storage changes smaller than the interval/resolution not
perform any shadow accounting to keep track of these volumes. This means that the model will generally underestimate the flow when dynamicInterpolatio

element is set to and water balance will not be closed for that run type. For larger reservoirs (more volume per unit water disk) the elevationInterval n false,
needs to be set to higher resolutions to account for this.

extrapolationMethod

The available extrapolation options are: notAllowed. linear, maxMin

storageCharacteristics

The storageCharacteristic storageTable contains a storage-level lookup table that is Note that this table should have the identical strictly increasing.
storage inputs as the from the .capacityCharacteristics outletTable uncontrolledOutlet

uncontrolledOutlet

The element contains which relates storage-release. Note that this table should have the identical uncontrolledOutlet capacityCharacteristics outletTable
storage inputs as the .storageCharacteristic storageTable

input / output variables and files

In the section, the model input variables will be configured.input

The element is required<input><inflow>

The element is optional, and can be set to the timeseries variable that can overwrite (take precedence) over the level as a result from the <input><level>
release table computation. For a given timestep, if the level input timeseries (e.g.) contains a value, this level is applied. The model will determine the HIn
resulting from closing the waterbalance (thus not using the release lookup value)release

The <input><release> element is optional, and can similarly be set to the timeseries variable that can overwrite (take precedence) over the lookup value
for the outlet. This means that for a given timestep, if the outlet input timeseries (e.g. QIn) contains a value, this release is applied. This input option was
added in 2023.02

When both a level and a release input value are available for a timestep, the model will use those values and write them to the output. A waterbalance
error term will be calculated and saved for that timestep as well.

The model will look for the required variables in the field of the PI timeseries (see). The Reservoir Model code will try to parse the parameter idMapping
configured model variables (like , etc) from the of the PI timeseries, the locationId is not used. In the section, the model output IIn, QOut parameterId output
variables will be configured. When writing the output timeseries, the locationId used in the import PI xml files will be used as the locationId in the output PI
xml files. The output model variableId's will be used as the parameter in the timeseries.

The naming convention of the input and output timeseries filenames are free, the model will determine which files to read for the input based on the inputTi
 filed in the run_info file. The following two input timeseries files are suggested:meSeriesFile

importState.xml
level values, or (HIn)
storage values (SIn)

import.xml
inflow (IIn)
outlet (optional) (QIn)

The following output timeseries file is suggested:

export.xml
inflow (IOut)
release (QOut)
storage (SOut)
level (HOut)
error (EOut)

Note that for the suggested variableId's in the provided example, the postfix and are used to denote if the series are for, or from the In Out putsIn putsOut
model.

State values

The and in the run_info file are used by the model to determine the start () and end () of the model startDateTime endDateTime startDateTime endDateTime
run. The model will pick the starting (state) value for level/storage (level has precedent in case of an inconsistency), inflow, outlet from the
inputTimeSeriesFiles at the specific datetime. It will use the output variables to look for the state timeseries. The model will first check for a state level
value. If a starting level value is missing in the input, the model will use the starting storage value. If both starting level/storage cannot be determined from
the input files, the model will use the first level element as defined in the storage table as the starting level. A Warning message will be generated to notify
the operator of this situation.

Inflow and outlet values at the starting time are not required at the first timestep and these values will not be used for storage calculations (no calculation at
the first timestep). When these values are not provided as inputs, a value of 0 is assumed (and written to the output).

When no inflows into the reservoir are defined at all, the model will not calculate, but also it will not error out. It will produce and export.xml with missings
(except for the initial values). When some intermediate inflow values are missing, the model will stop calculating at the point. It will not error out (and not
throw a warning), it will produces an export.xml with calculated values up until the point an inflow value was missing and it will have missings for all outputs
from that moment in time.

In case state functionality is configured in the file (inputStateDescriptionFile is defined), the model will also write (all) the outputs to the write run_info
location as defined in the stateLocation file (e.g.)exportState.xml

Reservoir Model specifics

The Integrated Reservoir Model can be considered , similar the the timestep definition of Delft-FEWS."timestep ending"
No calculations/processing is performed at the first timestep (t=0, as set in the run_info.xml file)startDateTime

Ensembles
The Reservoir Model can be run in parallel from Delft-FEWS. The element of the workflow should be set to The section of the runInLoop false. general
General Adapter configuration should contain the property as the model And lastly, to enable the parallel running of ensemble %TEMP_DIR% rootDir.
members the entry must be set in the global properties file. Here you either specify the number of cores to use or runInLoopParallelProcessorCount
specify 100 to use all available cores.

The workflow definition for a parallel model run:

 <activity>
 <runIndependent>true</runIndependent>
 <workflowId>Reservoir_Forecast</workflowId>
 <ensemble>
 <ensembleId>ENSEMBLE</ensembleId>
 <runInLoop>false</runInLoop>
 </ensemble>
 </activity>

The section of the General Adapter configuration: general

<general>
 <rootDir>%TEMP_DIR%</rootDir>
 <workDir>%ROOT_DIR%/work</workDir>
 ...
</general>

Entry in the global properties:

Config Example # to use 4 cores/cpu's:
runInLoopParallelProcessorCount=4

See for more details.the following page

In-Memory execution
From Delft-FEWS version 2023.01 onwards, it will be porssible to run the Reservoir Model adapter "in-memory" from Delft-FEWS, using the inMemoryFileT

 element of the section set to . In that case, all exported and imported files are transferred in memory between Delft-FEWS and the ransfer general True
executed Reservoir Model.

https://publicwiki.deltares.nl/display/FEWSDOC/19+Parallel+running+of+ensemble+loops+and+activities+on+one+forecasting+shell+instance

	Integrated Reservoir Model

