How to upgrade from version 1.4 IEngine

In version 1.4 a common case for an engine to become OpenMI compliant was to implement the IEngine interface. For many typical time progressing
engines this was more in the lines of the model than implementing the ILinkableCompenent directly.

In version 2.0 the recommended pendant is to extend the abstract class LinkableEngine or (not recommended) the LinkableGetSetEngine.

The the IEngine of 1.4 and the LinkableEngine of 2.0 are very alike. The IEngine extends the IRunEngine. The LinkableEngine extends from the
LinkableComponent directly. The LinkableEngine+LinkableComponent of 2.0 has approximately the same methods as the IEngine and IRunEngine of 1.4.
Code written to the 1.4 IEngine can to a large degree be reused in the 2.0 LinkableEngine. Class diagrams from both 1.4 and 2.0 can be seen in the
bottom of this document.

SetValues/GetValues

One of the major differences from 1.4 til 2.0 is the way values are get from and set to an engine. In 1.4 it was the IEngine that had the getValue and
setValue functionality, based on a quantityld and an Elementsetid.

In 2.0 it is the exchange items that holds set/get-value functionality. How each exchange item sets or gets its data is up the the exchange item. It could
hold a pointer to an unmanaged double array and set/get the value directly from that location. It could also store the value, and let the engine update the
values at every timestep.

Together with the Li nkabl eEngi ne is a number of EngineExchangeltems that can be used:

® Enginelln/Outputltem uses an |ValueSetter/IValueGetter interface to get/set the values.

® EngineDIn/Outputitem uses a delegate to get/set the values.

® EngineEIn/Outputltem works together with an LinkableGetSetEngine and delegates the work back to the LinkableGetSetEngine, very alike the 1.4
IRunEngine.

® Engineln/Outputltem are abstract. Extending these and implementing the GetValuesFromEngine and SetValuesToEngine are required.

We recommend you to use the LinkableEngine in favor of the LinkableGetSetEngine: Even though the GetSet version is closer to the 1.4 ways of doing
things and therefor will imply less work when upgrading to version 2.0, there are examples of bottlenecks due to the centralized GetSet method in the
component.

Examples of implementing the IValueSetter/IValueGetter interfaces can be found in http://openmi.svn.sourceforge.net/viewvc/openmi/trunk/Oatc/src/csharp
/Sdk/ModelWrapper/IValueSetter.cs

Example of using the IValueSetter/Getter version, where the output item is to return the i'th index of the f | owect or:

Engi nel Qut putltem out putltem = new Engi nel Qutputlten("id", quantity, elenentSet, |inkableEngine);
out put I tem Val ueCGetter = new Val ueToVect or Get Sett er <doubl e>(fl owector, i);

The same example using the delegate version of the output item would look like

Engi neDQut put | t em out put|tem = new Engi neDQut put I ten("id", quantity, elenentSet, |inkableEngine);
int del egatelndex = i; /] required if i is updated in a |oop
out put I tem Val ueCetter = del egate()

{

IList res = new List<double>(1) { flowector[del egatel ndex] };
return new Val ueSet (new List<IList>{res});

}s

The nitty-gritty details for exchange items:

It is up to the implementor to decide whether data is stored in the exchange item at the end of a timestep, or whether data is retrieved from the engine on
request, based on the St or eVal uesl nExchangel t emof the input and output item and the Def aul t For St or i ngVal uesl nExchangel t emin the
LinkableEngine. Each of the Engi nel n/ Qut put | t ens, being either the I, D og G version, supports both. Both options have their implications. Note that
any Enginelnput/Outputitem will inherits its default value from the Li nkabl eEngi ne.

In case data is stored in the exchange item, the LinkableEngine handles the data during its timestep. For an output item, if it has at least one consumer,
then the exchange item data is updated at the end of each time step. If it has no consumers, the item is not used, and needs not be updated. For an input
item, if it has a provider, its value is retrieved from the provider and stored to the engine before starting a new time step. This is the recommended
approach.

In case data is not stored in the exchange item, but being get/set directly from/to the engine, the update is immediate. Be carefull with input items that adds

up their contribution, i.e. an inflow. Updating an input item twice should not imply that the volume is added to the model twice, such an input item should
store the values and let the engine do the update before the timestep.

Initializing

The initialization part from 1.4 can be reused to a large extent. Most changes has to do with classes having changed their names and arguments.

http://openmi.svn.sourceforge.net/viewvc/openmi/trunk/Oatc/src/csharp/Sdk/ModelWrapper/IValueSetter.cs
http://openmi.svn.sourceforge.net/viewvc/openmi/trunk/Oatc/src/csharp/Sdk/ModelWrapper/IValueSetter.cs

Events

Whenever an exchange item changes state, the component should trigger an event containing a Exchangel t enEvent Ar gs. This has to be done for
every active exchange item. Often the exchange items changes at the end of the timestep, hence the event should be triggered there. However, some
exchange items may only change their value when they are actually requested for data, in which case the event should be triggered at every request that
changes the data.

Extending the LinkableEngine

When extending the LinkableEngine, the following abstract methods needs to be implemented

LinkableEngine

/1 Time Info and Tinme stepping
protected internal abstract ITine StartTime { get; }
protected internal abstract ITine EndTine { get; }
public abstract ITine CurrentTine { get; }
public abstract |Time GetCurrentTi me(bool asStanp);
public abstract ITine GetlnputTinme(bool asStanp);

/1 NModel control

public abstract void Initialize(lArgunent[] argunents);

protected internal abstract string[] OnValidate();

protected internal abstract void OnPrepare();

protected internal abstract void Perfornili nestep(l Collection<Engi neCutputlten> requiredQutputltens);
public abstract void Finish();

LinkableGetSetEngine

public abstract |Val ueSet Get Engi neVal ues(Exchangeltem exchangeltemn;
public abstract void Set Engi neVal ues(Engi nel nputlteminputltem |[Val ueSet val ues);

Generic step by step instructions when upgrading

This section will describe the steps involved when upgrading from 1.4 to 2.0. It is assumed that the source is a Microsoft Visual studio solution, containing
one C# project with the OpenMI wrapping of the engine, we will here call it MyEngi neW apper . cspr oj . Itis also assumed that the engine was wrapped
according to the 1.4 guidelines, i.e., the MyEngi neW apper . cspr oj project contains files alike:

®* MyModel W apper . cs - implementing the IEngine interface
®* MyMbddel Li nkabl eConponent . cs - extending the LinkableEngine

And for unmanaged engines also the two files:

®* M/Model DLLAccess. cs - accessing the unmanaged dll
®* MyModel Dot Net Access. cs - wrapping the MyModel DLLAccess to follow C# calling convetions

Prepare solution

Download the OpenMI 2.0 SDK source code and the standard

Convert existing solution to a Microsoft Visual Studio 2008 solution.

Remove all 1.4 projects from the solution

Add the following projects to the solution
© OpenM . St andar d2/ OpenM . St andar d2. cspr oj
© Qatc. OpenM / SDK/ Cat c. OpenM . Sdk. cspr oj - this includes Backbone, Buffer and Spatial (only one project now)
© Qatc. OpenM / Model W apper s/ Engi neW apper/ Cat c. OpenM . Sdk. Model W apper . cspr 0j

Prepare engine project - MyEngineWrapper.csproj

® Change the project to use at least version 3.0 and preferably 3.5 of the .Net framework.
®* Remove reference to all 1.4 projects
® Add references:
© OpenM . St andar d2
© Qatc. OpenM . SDK
®* Remove the file MyMbdel Li nkabl eConponent . cs, if existing. This file is no longer needed.

Generally no changes are required to the MyMbdel DLLAccess. cs and the MyMbdel Dot Net Access. cs, if existing.

Changes to the MyModel W apper . cs

Adjust the namespace lines, from usi ng OpenM . St andar d to usi ng OpenM . St andar d2
Change the class definition from publ i ¢ cl ass MyMddel W apper : | Engi ne to MyMbdel W apper : Linkabl eEngi ne, or alternatively
the Li nkabl eGet Set Engi ne

We recommend you to use the Li nkabl eEngi ne, since it is implemented following the ideas in version 2.0. You may use the Li nkabl eGet Set Engi ne,
which is more in the lines of the 1.4 version, and suffers from the problems related to the centralized Get/Set methods in the component to handle all data

transfer.

However, the Li nkabl eGet Set Engi ne may give rice to less changes to the existing code, and can be used in the first iteration.

If the implementation of the functions Get | nput Exchangel t emand Get Qut put Exchangel t emis creating exchange items, move the
implementation to the I ni ti al i ze method, now instead populating the lists of Engi nel nput | t ens and Engi neQut put | t ens.

The methods Get | nput Exchangel t em Get | nput Exchangel t enCount , Get Qut put Exchangel t emand Get Qut put Exchangel t enCount
can deleted.

All exchange items must be added to the the lists Engi nel nput | t ens and Engi neQut put | t ens. Any existing private field defining the lists
can be deleted.

All input and output exchange items must be one of the Enginelnputltem or EngineOutputltem mentioned earlier.

Implement the missing inherited abstract methods.
Clean up in the methods that are no longer used/required, like the Get Ti meHor i zon and Get Ear | i est NeededTi ne

Changes in the SDK classes compared to 1.4

Ti me: Only one class handling as well TimeStamp as TimeSpan (time interval). No longer need for the CalendarConverter, the Time class
contains these tools now.

Uni t : The | Dfrom 1.4 is now the Caption. There is a number of predefined units, and you are welcome to extend on the list.

Quantity: The Di mensi on property is moved to the Uni t of the quantity. The Val ueType is now a build in type, for example t ypeof
(doubl e) .

El ement Set : | d is now Capti on. The Spat i al Ref er ence is renamed to Spat i al Ref er enceSyst enkt and is a string.

El ement Type: Has changed. Find the one that suites the best.

Class diagrams

The 1.4 IEngine

blocked URL

The 2.0 LinkableEngine

blocked URL

http://openmi.svn.sourceforge.net/viewvc/openmi/trunk/doc/UML/IEngine.1.4.png
http://openmi.svn.sourceforge.net/viewvc/openmi/trunk/doc/UML/LinkableEngine.png

	How to upgrade from version 1.4 IEngine

