Setting up a WPS process using PyWPS

Using PyWPS as a WPS server instance allows you to easily transform about any Python into a WPS process. In this example we show you which code
has to be added to your script so that it is recognized by PyWPS.

The Process

To demonstrate the set up of a PyWPS process we show you how to convert a (very) simple piece of Python code into a PyWPS process. The process in
the code box below uses two input values which are added together.

| nput
val _1

=2
val _2 = 6

Process
result = val _1 + val _2

Qut put
print result

Add PyWPS Metadata

PyWPS requires some metadata about different components of the process. In the script a process identifier, title and abstract can be added as well as a
definition of the different in- and output parameters.

cl ass Process(WPSProcess):
def __init__(self):

WPSProcess. __init__(self,

identifier = "i nput s_added",
title = "This process adds the inputval ues"”,
ver si on ="1",
st or eSuppor t ed = "fal se",
statusSupported = "false",
abstract = "test process")
Tag Explanation

identifier Short name for the process, this is also used in the request URL

title (Long) Title of the process

version Version of the process

storeSupported | Indicate whether storage of results is supported (true or false)

statusSupporte Indicate whether status updates are supported (true or false)

abstract Abstract in which for example an explanation on how to use the process is
given

Defining PyWPS in- and outputs
In our example script we have two input variables and one output variable. We have to define these variables so PyWPS knows what to expect in the

request. This in- and output information, together with the meta information from the previous section is published at the XML document returned fromt he
DescribeProcess request.

self.val _1 = self.addLiterallnput(identifier = "val_1",

title = "I nput Value 1",
type = Fl oat Type)
self.val _2 = self.addLiteral Input(identifier = "val_2",
title = "I nput Value 2",
type = Fl oat Type)
self.result = self.addLiteral Qutput(identifier = "result",
title = "Value of the process result",
type = Fl oat Type)

In this case the input parameters are 'Literal' in- and output, this means that it is a value (float or integer) or a string given directly in the request URL. In

case of a file such as a NetCDF-, TXT- or Shapefile the term 'Complex’ in- and output is used.

Tag Explanation

identifie = Short name for the variable, this is also used in the request URL
r

title (Long) Title for the variable.
type Type of the variable (float, integer, string, etc.), don't forget to 'import' the type in your
script

The complete script

To complete the total script the met the process part has to be adjusted to fit the in- and outputs and has to be stated under the 'def exectute(self):' code.
See the code box below for the complete script.

from pywps. Process inport WPSProcess
fromtypes inport FloatType

cl ass Process(WPSProcess):
def __init__(self):

WPSProcess. __init__(self,

identifier = "inputs_added",
title = "This process adds the inputval ues",
ver si on ="1",
st or eSuppor t ed = "fal se",
statusSupported = "false",
abstract = "test process")
self.val _1 = self.addLiteral Input(identifier = "val_1",
title = "l nput Value 1",
type = Fl oat Type)
self.val _2 = self.addLiteral Input(identifier = "val_2",
title = "I nput Value 2",
type = Fl oat Type)
self.result = self.addLiteral Qutput(identifier = "result",
title = "Value of the process result",
type = Fl oat Type)

def execute(self):
| nput
val _1 = self.val _1. getVal ue()
val _2 = sel f.val _2.getVal ue()

Process
result = val_1 + val _2

CQut put

sel f.result.setVal ue(result)
return

Add the process to your WPS server

To get the process actually working on the WPS server some final steps have to be made. First is to upload the script to the process folder of your PyWPS
server, make sure that the filename is equal to the process identifier you defined in the initialization part. After uploading the configuration file (__init__.py)
has to be updated, simply add the new process to the list.

_all__ =["sinple_buffer","constituents","IDT_sinple","inputs_added"]

Afterwards the server instance has to be restarted to get the new process available from the web.

	Setting up a WPS process using PyWPS

