ModelMessagelnterface

This document describes the Model Message Interface (MMI): a draft protocol for serializing messages between numerical models and between numerical

modesl| and other programs.

There is already a common protocol in use for model messages, MPI. This works great for communication within a model. Since MPI2 it can also be used
to set up ad hoc communication between models.

There are scenarios where communication through MPI is not the most appropriate approach:

® [nter-language communication (e.g. JavaScript and C# support for MPI is unavailable or lagging)
® Flexible process structures (e.g., dynamic populations of distributed programs)

® Communcating through the web (e.g., through firewalls).

Here we describe a serialization protocol that can be used as a layer on top of alternative messaging protocols such as @MQ and WebSockets.

Application layers

Implementation

| 1)
Instance 1 Conventions Instance 2 stanﬂard_n_a me, “sEa_lsu.rTaEe_almude '
action™: "intialize
[| I
| | . .
1 1
JSON + "diype": "int32",
Instance 1 MM Instance 2 (0..n)ArrayBuffer *shape™: [300,300]
[| I
. /
1 |
- 1 1 ¢ ™y
Message middleware: PUSH/PULL/REP
Instance 1 MO, Websocket Instance 2 Socket Send/Recv onmessagews:
b [| | \ y.

Our main focus is sending and receiving n-dimensional arrays of simple fixed-length types such as integers and floating-point values, along with metadata
and additional attributes. We base our data model on the Variables and Attributes from the Common Data Model [ref].

A message contains a block of metadata followed by the data raw, binary format.

Metadata is in JSON format and UTF8 encoded. It contains at least the following three attributes:

nane: "variabl e",

shape: [3,3],

dtype: "fl oat 64"
}

With CF extension:

An extended example:

nanme: "vari abl e",
shape: [3, 3],
dtype: "float64",
attributes: {

st andar d_nane:

units: "nf

With numpy slicing convention:

"sea_surface_al tiude",

http://zeromq.org/
http://en.wikipedia.org/wiki/Websockets

name: "variabl e",
shape: [3,3],

dtype: "float64",
conti nuguous: "C',
strides: [[0,1],[0, 2]]

An intersection of the Python buffer protocol and the JavaScript ArrayBuffer protocol is forseen for the bulk (binary) data transmission.

Implementations

® https://pypi.python.org/pypi/mmi
® https://github.com/openearth/mmi-python
® https://github.com/openearth/mmi-csharp

http://docs.python.org/3/c-api/buffer.html#bufferobjects
https://developer.mozilla.org/en-US/docs/Web/API/ArrayBuffer
https://pypi.python.org/pypi/mmi
https://github.com/openearth/mmi-python
https://github.com/openearth/mmi-csharp

	ModelMessageInterface

