Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Card
labelWaterbalans

Waterbalans

De waterbalans wordt opgelost volgens een vooraf vastgelegd netwerk. Bronnen lozen geheel hun vracht op een oppervlaktewatereenheid (SWU) of een afwateringsgebied (Basin). Een afwateringsgebied loost zijn wateroverschot op een of meerdere oppervlaktewatereenheden. De verhouding tussen de ontvangende waterlichamen wordt vooraf vastgelegd. Een oppervlaktewatereenheid loost zijn wateroverschot vervolgens ook weer op een of meerdere waterlichamen. De hoofd-afstromingsrichting is hiermee vastgelegd.

Naast de hoofd-afstromingsrichting, waarbij de door het watersysteem worden getransporteerd, kunnen ook vaste debieten tussen oppervlaktewatereenheden onderling en tussen waterlichamen en afwateringsgebieden worden opgelegd. Op deze manier kan er ook water tegengesteld aan de hoofd-afstromingsrichting stromen. Dit is bijvoorbeeld van belang bij de inlaat van water of bij doorspoeling.

De werking van het transport van water- en stoffen in de KRW-Verkenner kan worden uitgelegd met het onderstaande eenvoudige voorbeeld..

Image Modified

Drie van de bronnen 'lozen' op het afwateringsgebied, drie op het onderste waterlichaam. Daarnaast wordt er water ingelaten om het peil in het afwateringsgebied te kunnen handhaven. Dit water wordt vanuit het bovenste waterlichaam ingelaten. De waterbalans van het afwateringsgebied wordt dan: 50 + 80 + 200 vanuit de bronnen, plus 40 inlaatwater. De totale stroom van het afwateringsgebied naar het waterlichaam wordt dan 370 (hierbij even voorbijgaand aan uitgaande stromen als verdamping en wegzijging). De waterbalans van het onderste waterlichaam wordt dan: 370 + 8 + 20 + 50 + 40 – 40, waarmee het debiet van het onderste naar het bovenste waterlichaam uitkomt op 448.

Bij het vastleggen van dergelijke retourstromen in het netwerk van waterlichamen en afwateringsgebieden is het van belang deze als een absoluut debiet op te geven.

wabacore

De waterbalans module wordt gevormd door de het programma Wabacore. Dit is een steady state waterbalansen model die voor de verkenner is opgezet als pre-processor voor de stofbalans.

De rekenkern krijgt de volgende informatie van de user interface door:

  • Alle segmenten (rekeneenheden) van de KRW-Verkenner schematisatie. De segmenten worden gevormd door de afwateringseenheden en de oppervlaktewater eenheden.
  • De relatie tussen de segmenten, de links.
  • Alle belastingen en onttrekkingen van water op de segmenten.

Wabacore maakt een stelsel vergelijkingen dat de waterbalans voor de segmenten weergeeft. De uitgangspunten daarbij zijn:

  • er is een willekeurig aantal bekende debieten tussen segmenten in het netwerk of over de randen;
  • elk segment heeft 0, 1 of meer onbekende uitstromende debieten; en
  • van elk onbekend uitstromend debiet is bekend welk deel (percentage) van de totale uitstroming uit het segment het omvat.

Dit resulteert in een stelsel vergelijkingen voor de onbekende debieten. Per segment is er een waterbalansvergelijking, en daarnaast zijn er vergelijkingen die de verhoudingen tussen 2 of meer onbekende uitstromende debieten uit hetzelfde segment vastleggen. Voor segmenten zonder onbekende uitstroming wordt om reken technische redenen een onbekende uitstroming toegevoegd. Als de invoer consistent is, zal dit debiet een waarde nul krijgen. Het wordt dan na oplossen van het stelsel weer verwijderd.

Oplossen vergelijkingen waterbalans

Het stelsel vergelijkingen wordt eerst gereduceerd, door directe substitutie van vergelijkingen met slechts 1 onbekende. Dit wordt herhaald totdat er geen direct oplosbare vergelijkingen meer zijn. In fysische termen betekent dit dat lijnvormige strengen van segmenten die aan het "vermaasde" netwerk vastzitten opgelost worden. Het resterende stelsel wordt opgelost via directe matrixinversie volgens de LU-decompositie-methode. Deze aanpak is gekozen omdat directe matrixinversie voor grote stelsels (b.v. de landelijke applicatie, ca. 20 000 onbekenden) niet mogelijk is vanwege een te groot beslag op het interne geheugen. Bij de landelijke applicatie bleek dat de reductie van het stelsel door directe substitutie zeer effectief is en dat het resterende stelsel zeer beperkt was (enkele honderden onbekenden).

...

composition-setupdeckM-typencardlabelR-typen Regionale wateren
Card
labelEcologie

Anchor
Ecologie
Ecologie
Ecologie

Ecologische kennisregels kunnen worden gebruikt om veranderingen in EKR-scores van de vier biologische kwaliteitselementen (macrofyten, macrofauna, vissen en fytoplankton) te berekenen op waterlichaamniveau na het nemen van maatregelen.

De ecologische rekenkern van de KRW-Verkenner bevat meerdere rekenmodulen (zie onderstaand figuur). Op hoofdlijnen wordt onderscheid gemaakt tussen twee hoofdmethoden:

  • Regionale kennisregels; en
  • Landelijke kennisregels

De hoofdmethode wordt bepaald door het KRW-watertype. In onderstaande tabel zijn de typen weergegeven. Bij het importeren of genereren van rekeneenheden in de Verkenner wordt het watertype en dus ook de hoofdmode gezet. In het geval van bijvoorbeeld een M3 wordt de rekenmethode op Regionaal gezet. Bij een R7 zal de methode op Ecotopen gezet worden. Sommige watertypen ondersteunen twee methoden, namelijk de M14 en M20. Standaard wordt dan gebruik gemaakt van de Regionale methode.

Section
Column
idKRW-typen
Card
width50%
label

KRW-Watertype

Ecotopen

Regionale wateren

M1a/b

 

x

M2

 

 

x

M3

 

x

M4

 

x

M6a/b

 

x

M7a/b

 

x

M8

 

x

M10

 

x

M14

x

x (default)

M20

x

x (default)

M21

x

 

M23

 

x

M27

 

x

M30

 

x

M31

 

x

Column
width
50%

KRW-Watertype

Ecotopen

Regionale wateren

R4

 

x

R5

 

x

R6

 

x

R7

x

 

R8

x

 

R12

 

x

R13

 

x

R14

 

x

R15

 

x

R16

x

 

R17

 

x

R18

 

x

Card
labelOverige typen

KRW-Watertype

Ecotopen

O2

x

 

Regionale wateren

De regionale kennisregels zijn gebaseerd op data van regionale wateren. De data is opgeslagen in een dataset die door RoyalHaskoning-DHV wordt beheerd (Evers et al, 2009). De database bevat relaties tussen EKR-score en verschillende waterkwaliteit- en inrichtingsvariabelen voor een groot aantal waterlichamen in Nederland. In 2009 zijn voor de ex-ante evaluatie regressiebomen afgeleid uit de data.

De KRW-watertypen zijn ingedeeld in 8 clusters. Per cluster zijn rekenregels afgeleid per biologisch kwaliteitselement.

Voor ieder cluster zijn een aantal stuurvariabelen van belang. In onderstaande tabel zijn per cluster de stuurvariabelen weergeven. De gebruiker van de KRW-Verkenner kan de chemische variabelen door de stofbalans van de Verkenner laten berekenen. Een andere mogelijkheid is dat de gebruiker de ecologische module loskoppelt van de stofbalans en baseert op metingen van de chemische variabelen.

Rijkswateren

Op dit moment is de ontwikkeling van rekenregels voor Rijkswateren nog in volle gang. De methodiek die hier gebruikt wordt is gebaseerd op ecotopen als rekeneenheden. Een waterlichaam bestaat hierbij uit verschillende ecotopen, die elk een specifieke soortenlijst bevatten. De soorten kunnen direct vertaald worden in EKR-scores door gebruik te maken van de KRW-maatlatten. Door een oppervlaktegewogen berekening te maken wordt een soortenlijst gegenereerd (macrofauna is hierbij een uitzondering) per waterlichaam en aan de hand hiervan wordt de EKR-score berekend. Een verandering in de ecotoopcompositie door bijvoorbeeld het nemen van een inrichtingsmaatregel heeft op deze manier effect op de EKR-score. Kijk bij Archief voor meer informatie.

...

card

Card
labelMaatregelen

Anchor
Maatregelen
Maatregelen
Maatregelen

Met het nemen van maatregelen zet de gebruiker het stuur op de ontwikkelingen in zijn beheersgebied. De KRW-Verkenner maakt het mogelijk de effecten van deze maatregelen op de ecologische kwaliteit door te rekenen. Dit is de essentie van de KRW-Verkenner.
In de KRW-Verkenner zit een groot aantal maatregelen en hun effecten voorgeprogrammeerd. Globaal worden de maatregelen onderverdeeld in drie categorieën:

  • Maatregelen gericht op puntbronnen
  • Maatregelen op Diffuse bronnen; en
  • Maatregelen gericht op de inrichting en het beheer (ecologie).

Al naar gelang de wens van de gebruiker kan deze ervoor kiezen maatregelen generiek of juist locatiespecifiek toe te passen. Daarnaast heeft de gebruiker de mogelijkheid de maatregelen in de tijd in te plannen. Gecombineerde maatregelpakketten en "gestapelde maatregelen" kunnen worden doorgerekend. Voor zeer complexe maatregelpakketten, waarbij bijvoorbeeld ingrijpende hydrologische aanpassingen worden doorgevoerd of grote planologische ingrepen, waarbij bijvoorbeeld zowel effecten op emissies (locaties van emissiebronnen) en inrichtingsmaatregelen worden doorgevoerd, kan het noodzakelijk zijn om nieuwe databases voor de hydrologie, emissies of gebiedskenmerken in te lezen. Ook effecten van andere, niet specifiek ten behoeve van de KRW genomen maatregelen kunnen worden doorgerekend, mits ze een kwantificeerbaar effect hebben op hydrologie, emissies of gebiedskenmerken. Voorbeelden hiervan zijn maatregelen die mogelijk worden genomen in het kader van veiligheid en zoetwatervoorziening.

...