Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.



...

What

nameofinstance.xml

Description

Configuration of the pcraster transformation module

schema location

http

https://

fews

fewsdocs.

wldelft

deltares.nl/schemas/version1.0/pcrTransformationSets.xsd

Entry in ModuleDescriptors

<moduleDescriptor id="PcrTransformation">
<description>PCr Transformation Component</description>

<className>nl.wldelft.fews.system.plugin.transformation.PcrTransformationController</className>
</moduleDescriptor>

Table of Contents
Children Display

Introduction

The pcrTransformation model allows a direct link between data in DELFT-FEWS and pcraster using the PCraster API based on in-memory exchange of (XML) data. As such, Delft-Fews can use all available pcraster functions to process data. Pcraster documentation is available elsewhere.

...

                                <areaMap>
                                                <geoDatum>WGS 1984</geoDatum>
                                                <upperLeftCorner>
                                                                <x>2</x>
                                                                <y>1</y>
                                                                <z>90</z>
                                                </upperLeftCorner>
                                                <rows>100</rows>
                                                <columns>100</columns>
                                                <cellwidth>0.1</cellwidth>
                                                <cellheight>0.1</cellheight>
                                </areaMap>

Defining internal, input and output variables

...

A working sample configuration for PcrTransformation is shown as below:

Code Block
xml
xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- Solar radiation module demonstration configuration -->
<pcrTransformationSets xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.wldelft.nl/fews
http https://fewsfewsdocs.wldelftdeltares.nl/schemas/version1.0/pcrTransformationSets.xsd" version="1.1">
	<logLevel>WARN</logLevel>
	<pcrTransformationSet id="Potradiation">
		<areaMap>
			<locationId>Radiation</locationId>
		</areaMap>
		<definitions>
			<dataExchange>memory</dataExchange>
			<inputVariable variableId="Altitude" dataType="scalar" convertDatum="false" spatialType="spatial">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Time.event</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<inputVariable variableId="YearDay" dataType="scalar" convertDatum="false" scalarType="timeAsDayofYear">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>scalar</valueType>
					<parameterId>Time.event</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<inputVariable variableId="Hour" dataType="scalar" convertDatum="false" scalarType="timeAsHourofDay">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>scalar</valueType>
					<parameterId>Time.event</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<!-- Total potential Solar radiation -->
			<outputVariable variableId="SL" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Sol.pot</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
			<!-- Diffuse radiation -->
			<outputVariable variableId="SLDF" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Sol.pot.diffuse</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
			<!-- direct radiation -->
			<outputVariable variableId="SLDR" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>Radiation</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>Sol.pot.direct</parameterId>
					<locationId>Radiation</locationId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="15"/>
					<relativeViewPeriod unit="hour" start="0" end="48"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
		</definitions>
		<pcrModel id="String">
			<text><![CDATA[
#! --unittrue --degrees
# Test script to determine radiation over a grid.
#
# Inputs from Delft-Fews into this script
# - YearDay -> scalar with  day since beginning of year
# - Hour of day -> Fractional hour of day (e.g. 12.5 = 12:30)
# Ouputs to FEWS
# - SL -> Total Solar radiation
#
# This version determines Clear Sky radiation assuming a level surface using a uniform
# altitude. This level is configured in the script below.
Altitude=spatial(10);

Latitude = ycoordinate(boolean(Altitude));
Longitude = xcoordinate(boolean(Altitude));

Day =YearDay;
pi = 3.1416;
Sc       = 1367.0;          # Solar constant (Gates, 1980) [W/m2]
Trans    = 0.6;             # Transmissivity tau (Gates, 1980)

AtmPcor = ((288-0.0065*Altitude)/288)**5.256;            # atm pressure corr [-]

# Solar geometry
# ----------------------------
# SolDec  :declination sun per day  between +23 and -23 [deg]
# HourAng :hour angle [-] of sun during day
# SolAlt  :solar altitude [deg], height of sun above horizon
# SolDec  = -23.4*cos(360*(Day+10)/365);
# Now added a new function that should work on all latitudes!
theta    =(Day-1)*360/365;  # day expressed in degrees

# Time change equal to 4 min per degree longtitude
# Assume the time input to be GMT
HourS = Hour + (Longitude * 4/60);

SolDec =180/pi * (0.006918-0.399912 * cos(theta)+0.070257 * sin(theta) -   0.006758 * cos(2*theta)+0.000907 * sin(2*theta) -  0.002697 * cos(3*theta)+0.001480 * sin(3*theta));

HourAng = 15*(HourS-12.01);

SolAlt  = scalar(asin(scalar(sin(Latitude)*sin(SolDec)+cos(Latitude)*
           cos(SolDec)*cos(HourAng))));

# Solar azimuth
# ----------------------------
# SolAzi  :angle solar beams to N-S axes earth [deg]
 SolAzi = scalar(acos((sin(SolDec)*cos(Latitude)-cos(SolDec)*
          sin(Latitude)*cos(HourAng))/cos(SolAlt)));
 SolAzi = if(HourS le 12 then SolAzi else 360 - SolAzi);

 Slope = spatial(0.0001);
 Aspect = spatial(1);

# Surface azimuth
# ----------------------------
# cosIncident :cosine of angle of incident; angle solar beams to angle surface
 cosIncident = sin(SolAlt)*cos(Slope)+cos(SolAlt)*sin(Slope)
               *cos(SolAzi-Aspect);

# Radiation outer atmosphere
# ----------------------------
 OpCorr = Trans**((sqrt(1229+(614*sin(SolAlt))**2)
          -614*sin(SolAlt))*AtmPcor);    # correction for air masses [-]
 Sout   = Sc*(1+0.034*cos(360*Day/365)); # radiation outer atmosphere [W/m2]
 Snor   = Sout*OpCorr;                   # rad on surface normal to the beam [W/m2]

# Radiation at DEM
# ----------------------------
# Sdir   :direct sunlight on a horizontal surface [W/m2] if no shade
# Sdiff  :diffuse light [W/m2] for shade and no shade
# Stot   :total incomming light Sdir+Sdiff [W/m2] at Hour
# Radiation :avg of Stot(Hour) and Stot(Hour-HourStep)
# NOTE: PradM only valid for HourStep and DayStep = 1
 Sdir   = if(Snor*cosIncident<0,0.0,Snor*cosIncident);
 Sdiff  = if(Sout*(0.271-0.294*OpCorr)*sin(SolAlt)<0, 0.0,
          Sout*(0.271-0.294*OpCorr)*sin(SolAlt));

# Fill in missing values with areaaaverage
SLDR=cover((Sdir*1),(Altitude * 0) + areaaverage(Sdir*1,boolean(Altitude))); # hourly rad [W/m2]
SLDF=cover((Sdiff*1),(Altitude * 0) + areaaverage(Sdiff*1,boolean(Altitude))); # hourly rad [W/m2]

SL   = SLDR + SLDF;       # Total rad  in [W/m2]



			]]></text>
		</pcrModel>
	</pcrTransformationSet>
</pcrTransformationSets>

Points precipitation to grid example

Code Block
xml
xml

<?xml version="1.0" encoding="UTF-8"?>
<pcrTransformationSets xmlns="http://www.wldelft.nl/fews" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.wldelft.nl/fews
http://fews.wldelft.nl/schemas/version1.0/pcrTransformationSets.xsd" version="1.1">
	<logLevel>WARN</logLevel>
	<pcrTransformationSet id="Thiessen">
		<areaMap>
			<locationId>FineGrid</locationId>
		</areaMap>
		<definitions>
			<dataExchange>memory</dataExchange>
			<inputVariable variableId="P" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>ImportPubRts</moduleInstanceId>
					<valueType>scalar</valueType>
					<parameterId>P.obs</parameterId>
					<locationSetId>MetGauges_P.obs</locationSetId>
					<timeSeriesType>external historical</timeSeriesType>
					<timeStep unit="minute" multiplier="10"/>
					<relativeViewPeriod unit="hour" start="-96" startOverrulable="true" end="0"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</inputVariable>
			<outputVariable variableId="MeasMap" dataType="scalar" convertDatum="false">
				<timeSeriesSet>
					<moduleInstanceId>PrecipitationGaugeToGrid_Historical</moduleInstanceId>
					<valueType>grid</valueType>
					<parameterId>P.obs</parameterId>
					<locationId>FineGrid</locationId>
					<timeSeriesType>simulated forecasting</timeSeriesType>
					<timeStep unit="minute" multiplier="10"/>
					<relativeViewPeriod unit="hour" start="-96" end="0" startOverrulable="true"/>
					<readWriteMode>add originals</readWriteMode>
				</timeSeriesSet>
			</outputVariable>
		</definitions>
		<pcrModel id="String">
			<text><![CDATA[#! --unittrue --degrees
dynamic
# Simple Thiesen polygons to get spatial average precipitation on a grid

# Creat unique Id's for input stations
Unq = uniqueid(boolean(P));
# Now generate polygons and fill those
GaugeArea = spreadzone(ordinal(cover(Unq,0)),0,1);
MeasMap = areaaverage(P,GaugeArea);	
]]></text>
		</pcrModel>
	</pcrTransformationSet>
</pcrTransformationSets>

PCRaster installation

For 64 bit support PCRaster needs to be installed manually. See: PCRaster