You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 3 Next »

XBeach is a numerical storm impact model software that allows for simulations of flow, waves, sediment transport and morphological changes. It was originally developed for simulating the behavior of sandy coasts under extreme / energetic hydrodynamic conditions, specifically the processes of dune erosion (e.g. Van Thiel de Vries, 2009) and dune overwash (McCall et al., 2010). However, over the years several developments have lead to the very broad range of applications that XBeach is used for nowadays. XBeach is not only applied on sandy coasts anymore, but also on gravel coasts and coasts fronted by coral reef systems. And more recently, XBeach is being used to study erosion of (muddy) tidal flats.

Theory

When waves propagate through a vegetation field, wave energy is dissipated due to the work carried out by the waves on the vegetation. When assuming normally incident waves, and neglecting wave growth, refraction and dissipation due to friction and wave breaking, the wave energy conservation equation can be written as:

                                                                                                                                                             

 

where E is the wave energy density, cgis the wave group velocity and εv is the time-averaged vegetation-induced rate of energy dissipation per unit horizontal area. A widely used method is to compute the time-averaged wave energy loss as the actual work carried out by the waves on the vegetation as function of the wave-induced drag force (e.g. Dalrymple et al., 1984):

                                                                                                                                         

 

where h is the water depth, αh is the vegetation height, F is the horizontal component of the force acting on the vegetation per unit volume, and u is the horizontal velocity. The overbar indicates averaging over time. When neglecting the plant swaying motion and inertial forces, the plant-induced force can be expressed with a Morison-type equation (Morison et al., 1950):

                                                                                                                                               

 

where ρ is the water density, CD is a drag coefficient, bv is the vegetation stem diameter, and N is the vegetation density. By applying linear wave theory to compute the horizontal component of the velocity, Dalrymple et al. (1984) found an expression for the time-averaged energy dissipation for regular waves propagation through a vegetation field on a uniform bed. This expression was extended by Mendez and Losada (2004) to include random waves, and waves propagating over a sloping bed, given by:

                                                                   

 

where k is the wave number, g is the gravitational acceleration, σ is the wave frequency, h is the water depth, CD is the (bulk) drag coefficient and Hrms is the root mean square wave height. 

Typical applications

test test test

How to use it?

test test test

Further readings

test test test

  • No labels