Exercise outline

The goal of this exercise is to create a simple hydrological volume model. In the end, it should be possible to run the volume model and inspect some (very simple) spatio-temporal output results.

Create a new model class

Add to the plugin project a new folder named Models. In this folder, create a new class named DrainageBasin.cs and adapt the contents as shown below:

In order to successfully build the code below, references need to be added to:

  • GeoAPI
  • GeoAPI.Extensions
  • NetTopologySuite.Extensions
  • SharpMap
  • SharpMap.API

These Dlls can all be found in the packages folder of the solution (D:\VolumeModel\packages\DeltaShell.Framework.1.1.1.34867\lib\net40\DeltaShell).
After adding the references be sure to set the copylocal property of the references to false to prevent duplication of dlls in the bin folder.

using System.Collections.Generic;
using System.ComponentModel;
using DelftTools.Utils.Collections;
using DelftTools.Utils.Collections.Generic;
using GeoAPI.CoordinateSystems;
using GeoAPI.Extensions.Feature;
namespace DeltaShell.Plugins.VolumeModel.Models
{
    /// <summary>
    /// Drainage basin containing a set of catchments and a coordinatesystem.
    /// Implements INotifyPropertyChanged and INotifyCollectionChanged to handle events
    /// </summary>
    public class DrainageBasin : INotifyPropertyChanged, INotifyCollectionChanged
    {
        private ICoordinateSystem coordinateSystem;
        private readonly IEventedList<IFeature> catchments;
        public DrainageBasin()
        {
            // Add an empty (evented) list of features and subscribe to changes (bubble changes)
            catchments = new EventedList<IFeature>();
            catchments.CollectionChanged += (s, e) =>
                {
                    if (CollectionChanged != null)
                    {
                        CollectionChanged(s, e);
                    }
                };
        }
        public ICoordinateSystem CoordinateSystem
        {
            get { return coordinateSystem; }
            set
            {
                coordinateSystem = value;
                // invoke property changed event after setting coordinateSystem
                if (PropertyChanged != null)
                {
                    PropertyChanged(this, new PropertyChangedEventArgs("CoordinateSystem"));
                }
            }
        }
        public IList<IFeature> Catchments
        {
            get { return catchments; }
        }
        public event PropertyChangedEventHandler PropertyChanged;
        public event NotifyCollectionChangedEventHandler CollectionChanged;
    }
}

The comments in the code explain the different parts of the DrainageBasin implementation.

 

Now also add VolumeModel.cs to the Models folder and add the following code:

using System;
using System.Linq;
using DelftTools.Functions;
using DelftTools.Functions.Generic;
using DelftTools.Shell.Core.Workflow;
using DelftTools.Shell.Core.Workflow.DataItems;
using GeoAPI.Extensions.Feature;
using GeoAPI.Geometries;
using NetTopologySuite.Extensions.Coverages;
namespace DeltaShell.Plugins.VolumeModel.Models
{
    public class VolumeModel : ModelBase
    {
        private readonly DrainageBasin basin;
        private readonly TimeSeries precipitation;
        private readonly FeatureCoverage volume;
        /// <summary>
        /// Creates a volume model
        /// </summary>
        public VolumeModel()
        {
            // Create the input items of the volume model
            basin = new DrainageBasin();
            precipitation = new TimeSeries { Components = { new Variable<double>("Precipitation") } };
            // Create the output item of the volume model
            volume = new FeatureCoverage("Output data")
            {
                IsTimeDependent = true,
                Arguments = { new Variable<IFeature>("Catchment") { FixedSize = 0 } },
                Components = { new Variable<double>("Volume") },
            };
            // Wrap fields as input/output data items
            DataItems.Add(new DataItem(precipitation, "Precipitation", typeof(TimeSeries), DataItemRole.Input, "PrecipitationTag"));
            DataItems.Add(new DataItem(basin, "Basin", typeof(DrainageBasin), DataItemRole.Input, "BasinTag"));
            DataItems.Add(new DataItem(volume, "Volume", typeof(FeatureCoverage), DataItemRole.Output, "VolumeTag"));
        }
        /// <summary>
        /// The precipitation time series: P = P(t) [L/T]. Input of the model.
        /// </summary>
        public TimeSeries Precipitation
        {
            get { return precipitation; }
        }
        /// <summary>
        /// The drainage basin (set of catchments). Input of the model.
        /// </summary>
        public DrainageBasin Basin
        {
            get { return basin; }
        }
        /// <summary>
        /// Time-dependent feature coverage containing the volume of water per catchment: V = V(t, c) [L3/T]. Output of the model.
        /// </summary>
        public FeatureCoverage Volume
        {
            get { return volume; }
        }
        /// <summary>
        /// The initialization of model runs
        /// </summary>
        protected override void OnInitialize()
        {
            // Clear any previous output
            volume.Clear();
            // Ensure the coordinate system of the volume output is the same as the catchments input (basin)
            volume.CoordinateSystem = (GeoAPI.Extensions.CoordinateSystems.ICoordinateSystem) basin.CoordinateSystem;
            // Ensure at least one catchment and one precipitation value is present
            ValidateInputData();
            // Initialize the output feature coverage
            volume.Features.AddRange(basin.Catchments);
            volume.FeatureVariable.FixedSize = basin.Catchments.Count();
            volume.FeatureVariable.AddValues(basin.Catchments);
        }
        /// <summary>
        /// The actual calculation during model run
        /// </summary>
        protected override void OnExecute()
        {
            // Loop all times
            foreach (var time in precipitation.Time.Values)
            {
                // Obtain the precipitation value for the current time
                var p = (double)precipitation[time];
                // Calculate a volume value for every catchment based on catchment area and precipitation value
                var volumes = basin.Catchments.Select(f => f.Geometry).Select(pol => pol.Area * p);
                // Add the calculated volume values to the output feature coverage
                volume[time] = volumes;
            }
            Status = ActivityStatus.Done;
        }
        private void ValidateInputData()
        {
            var hasCatchments = basin.Catchments.Any();
            var hasPrecipitationData = precipitation.Time.Values.Any();
            if (!hasCatchments && !hasPrecipitationData)
            {
                throw new InvalidOperationException("At least one catchment and one precipitation value should be present");
            }
            if (!hasCatchments)
            {
                throw new InvalidOperationException("At least one catchment should be present");
            }
            if (! basin.Catchments.All(c => c.Geometry is IPolygon || c.Geometry is IMultiPolygon))
            {
                throw new InvalidOperationException("All catchment features should be polygons");
            }
            if (!hasPrecipitationData)
            {
                throw new InvalidOperationException("At least one precipitation value should be present");
            }
        }
    }
} 

The model class is derived from the ModelBase class in order to automatically implement some basic time dependent modeling logic.

The comments in the code explain the different parts of the model implementation.

The model uses some basic data structures like data items, (feature) coverages and timeseries (functions). A description on the background and usage of these data structures is not part of this tutorial.

Register the model in the application plugin class

Register the model in the application plugin by adding the following code to VolumeModelApplicationPlugin.cs:

public override IEnumerable<ModelInfo> GetModelInfos()
{
    yield return new ModelInfo
        {
            Name = "Volume Model",
            Category = "Volume models",
            CreateModel = o => new Models.VolumeModel()
        };
}

Delta Shell should now be able to create and run volume models.

Add importer for DrainageBasin

We now only need to add a small importer for importing our custom DrainageBasin from a shapefile. Add a new class DrainageBasinImporter in the folder Importers and add the following code :

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using DelftTools.Shell.Core;
using DeltaShell.Plugins.VolumeModel.Models;
using GeoAPI.Extensions.Feature;
using NetTopologySuite.Extensions.Features;
using SharpMap.Data.Providers;
namespace DeltaShell.Plugins.VolumeModel.Importers
{
    public class DrainageBasinImporter : IFileImporter
    {
        public string Name { get { return "Shape file importer"; } }
        
        public string Category { get { return "General"; } }
        
        public Bitmap Image { get; private set; }
        public IEnumerable<Type> SupportedItemTypes
        {
            get { yield return typeof(DrainageBasin); }
        }
        public bool CanImportOnRootLevel { get { return false; } }
        public string FileFilter { get { return "Shape file|*.shp"; } }
        public string TargetDataDirectory { get; set; }
        public bool ShouldCancel { get; set; }
        public ImportProgressChangedDelegate ProgressChanged { get; set; }
        public bool OpenViewAfterImport { get { return false; } }
        public bool CanImportOn(object targetObject)
        {
            return targetObject is DrainageBasin;
        }
        public object ImportItem(string path, object target = null)
        {
            var basin = target as DrainageBasin;
            if (basin == null)
            {
                throw new Exception("Can only import on drainage basins");
            }
            
            basin.Catchments.Clear();
            
            var shapeFile = new ShapeFile(path);
            
            foreach (var feature in shapeFile.Features.OfType<IFeature>())
            {
                basin.Catchments.Add(new Feature
                {
                    Geometry = feature.Geometry,
                    Attributes = feature.Attributes
                });
            }
            basin.CoordinateSystem = shapeFile.CoordinateSystem;
            return basin;
        }
    }
}

Important: this importer also needs to be registered at the GetFileImporters method in the VolumeModelApplicationPlugin class. Otherwise, it won't be accessible.

Exercise results

First of all, download the following WaterML2 XML file: WaterML2_precipitation_data.XML, if not done before. Also download and unzip the shape files contained in the following archive: Gemeenten.zip. You will use all these data along this exercise.

Next, run the application and start creating a new model item (right click on project | Add | New Model ...). Make sure that the new model is selected in the dialog:



If you now click on OK, a new model item should be added to the project with a structure as shown in the following image:


Try to run the model (right click on the volume model item | Run Model) and check the Messages window. The following error messages will be generated:

As indicated in the error messages, some precipitation and catchment input data must be available for the model to be successfully run.

First, start importing some WaterML2 data on the precipitation time series item (right click the precipitation item | Import...). A file selection dialog automatically pops up. Select the previously downloaded file WATERML2_precipitation_data.xml.
After finishing the import, the precipitation item should contain data as shown in the following image (double click the precipitation item in the Project window):



Next, start importing a shape file on the Basin item (right click the Basin item | Import...)  and select the file Gemeente.shp.
Now, run the model again and notice that, this time, no new error messages are sent to the Messages window.
Open the volume output (double click the volume item in the Project window and select the Map view) and check that the model results agree with the ones shown in the following image:

In order to inspect time dependent (output) data, open the Time Navigator window and move the slider or click one of the play buttons:

  • No labels